

Ulrich Scholten

Dynamic Network Notation

A Graphical Modeling Language to Support the Visualization and Management
of Network Effects in Service Platforms

Dynamic Network Notation

A Graphical Modeling Language to Support the Visualization
and Management of Network Effects in Service Platforms

Zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften des

Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Ing. (FH) Ulrich Scholten, MBA

Tag der mündlichen Prüfung: 14.06.2013

Referent: Prof. Dr. Stefan Tai

Korreferent: Prof. Dr. Orestis Terzidis

Karlsruhe, 2013

Impressum

Karlsruher Institut für Technologie (KIT)

KIT Scientific Publishing

Straße am Forum 2

D-76131 Karlsruhe

www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales

Forschungszentrum in der Helmholtz-Gemeinschaft

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz

publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2013

Print on Demand

ISSN: XXXX-XXXX

ISBN: 978-3-86644-XXX-X

Abstract

Service platforms have moved into the center of interest in both academic research and the IT

industry due to their economic and technical impact. These multitenant platforms provide own or

third party software as metered, on-demand services. Corresponding service offers exhibit net-

work effects. Network effects describe the interdependency of service or platform value, service

consumption and third party service provisioning. The present work introduces a graphical mod-

eling language to support service platform design with focus on the exploitation of network ef-

fects. Several notations exist allowing graphical modeling of collaborative networks around ser-

vice platforms from a platform operators’ perspective. All these solutions model distinct value

flows. The representation or control of network effects, including more implicit relationships of

the platform operator to groups of ecosystem participants, however, does not find consideration.

The artifacts developed in this thesis build on a conceptual model of these effects including

ways to manipulate them. This conceptual model has been derived through surveys, enhanced by

fundamental work from system theory as well as theory of control, applied to service platforms.

The central artifact in this thesis is the Dynamic Network Notation, a graphical modeling lan-

guage. This language is able to represent platforms as well as platform ecosystems together with

their competitive environment and, most importantly, immanent network effects. It further allo-

cates categories of control mechanisms to manipulate these effects. In addition, the thesis sug-

gests a pattern language to formulate building blocks of structured experience, to be used within

the models. Lastly, the present work instantiates the Dynamic Network Notation within an editor.

Through several use case studies, the present work evaluates and confirms the expressiveness

of the Dynamic Network Notation and its ability to produce models which represent network

effects in service platforms. The original research contributions of this work and its resulting

artifacts comprise (a) the representation of the platform operator’s staged areas of authority with

respect to ecosystem participants, (b) the representation of and differentiation between distinct

flows of value exchange and exercise of influence in and around the platform, (c) the allocation

and conceptualized interplay of enforcing- and incentivizing mechanisms to manage ecosystem

participants and (d) the focus on the engineering and exploitation of network effects.

Abstract

 VI

Acknowledgement

 VII

Acknowledgement

I would like to offer my sincere thanks to my PhD supervisor Professor Dr. Stefan Tai, for the

guidance, support, motivation and for setting consistently high goals. His knowledge, patience

and strength of purpose guided me through my research and the writing of this thesis. Also, I

would like to express my great appreciation to the second reviewer of my thesis Professor Dr.

Orestis Terzidis for the many valuable contributions and suggestions made during the preparation

of this work. I would like to thank the thesis committee, Professor Dr. Ute Werner, Professor Dr.

Rudi Studer, along with Professors Tai and Terzidis for the professional, warm and yet challeng-

ing reception of my thesis defense. Sincere thanks also to Professor Dr. Lutz Heuser, who – in his

former position as Vice President of SAP Research of SAP Research – initiated the Strategic

Value Net (SVN) Project which set the frame for my dissertation project.

I would like to thank my fellow researchers and co-publishers, in particular my wife Dr.

Simone Scholten, who cooperated with me in her position as Senior Researcher at SAP Re-

search. Also deepest appreciation to Robin Fischer, my colleague and PhD candidate in the

SVN team, Dr. Nelly Schuster, Project Leader of the MoSaiC project at KIT, Dr. Christian

Janiesch, Senior Research Associate at the AIFB Institute of KIT, Dr. Christian Ziripins, Sen-

ior Scientist at Seeburger AG as well as Dr. Norman May, Project Leader of the The-

seus/Texo project at SAP. Dr. Zirpins and Dr. Janiesch deserve additional tribute for their

professional advice in the preparation of my doctoral thesis. Particular thanks also go to my

Graduate Assistant Matthias Reimchen and to Dr. Andreas Harth, Senior Research Associate

at AIFB for sharing his expertise with me on conducting academic research. I would like to

express specific appreciation to the administrative support in the Institute for Applied Infor-

matics and Formal Description Methods AIFB, in particular Mrs. Rita Schmidt.

I would further like to express particular thanks to Hazel Skeet at VentureSkies and Eric

Moskwa at M-Engineering for continuous feedback and inspiration throughout the whole

research project. Particular thanks are also due to the companies SAP AG, CAS Software

AG, S.Chand Group and M-Engineering who volunteered for testing and evaluation of the

Dynamic Network Notation and provided helpful feedback and ideas.

The support, inspiration and friendship offered to me by collegues and friends in the re-

search group of Economics and Technology of eOrganizations in Berlin and Karlsruhe and

my gratitude to them must also be recorded.

Sincere gratitude and love to my wife Simone and my sons Yann and Yves.

Karlsruhe, Ulrich Scholten

April 2013 Karlsruhe Institute of Technology (KIT)

Acknowledgement

 VIII

 This thesis is dedicated to my parents Inge and Heinz Scholten

Table of Contents

Abstract ... V

Acknowledgement ... VII

Table of Contents... IX

A Foundations ... 1

1 Motivation ... 1

1.1 Related Research ... 3

1.2 Main Contributions.. 5

1.3 Research Method and Thesis Structure ... 6

1.3.1 Research Method ... 7

1.3.2 Thesis Structure ... 8

2 Problem Identification ... 11

2.1 Research Design for Data Acquisition .. 12

2.2 Basic Terms and Definitions ... 15

2.2.1 Definitions Related to Services ... 15

2.2.2 Definitions Related to Network Effects... 17

2.2.3 Definitions Related to the Addressed Target Groups .. 19

2.3 Service Intermediaries ... 21

2.4 Central Control and Quality .. 24

2.5 Autonomy and Self-Organization ... 29

2.6 Managed Self-Organization .. 31

2.6.1 Managed Self-Organization through Enforcement .. 32

2.6.2 Managed Self-Organization through Incentives .. 35

2.7 Base Value and Critical Mass ... 37

2.8 Research Requirements ... 39

2.9 Research Hypotheses ... 41

3 Related Theory .. 43

3.1 Language Engineering ... 43

3.1.1 Language and Grammar .. 44

3.1.2 Generative Grammars .. 46

3.1.3 Graphical Language Engineering .. 49

3.2 Network Effects ... 54

3.3 Theory on Control ... 65

B Solution Design ... 67

4 Conceptual Model.. 67

4.1 Structural Elements ... 68

4.1.1 Derivation of Structural Elements ... 68

4.1.2 Control Area .. 70

4.1.3 Influence Area ... 71

4.1.4 Noise Area ... 73

4.1.5 Divisions and Division Groups.. 74

4.2 Process Elements ... 75

4.2.1 Derivation of Process Elements ... 76

Table of Contents

 X

4.2.2 Participant Groups... 78

4.2.3 Participants .. 80

4.2.4 Activities ... 82

4.2.5 Transaction .. 84

4.2.6 Influence.. 85

4.3 Control Mechanisms ... 87

4.3.1 Derivation of Control Mechanisms ... 88

4.3.2 Service Platform Provisions .. 91

4.3.3 Prescriptive Control .. 92

4.3.4 Sanctional Control... 94

4.3.5 Restrictive Control .. 95

4.3.6 Market Regulative Control.. 97

4.3.7 Informative Control... 100

4.3.8 Motivational Control ... 101

5 Dyno - Model and Notation .. 103

5.1 Precepts ... 103

5.1.1 Norms .. 103

5.1.2 Scope ... 104

5.1.3 Conformance ... 104

5.2 Abstract Morphology and Semantics .. 105

5.2.1 Design Concepts ... 105

5.2.2 Control Area .. 108

5.2.3 Influence Area ... 109

5.2.4 Noise Area... 110

5.2.5 Divisions ... 110

5.2.6 Participants .. 112

5.2.7 Activities ... 114

5.2.8 Transaction .. 115

5.2.9 Influence.. 116

5.2.10 Gateways ... 118

5.2.11 Protagonist Control ... 119

5.3 Abstract Syntax ... 120

5.3.1 Root Element and Core Meta-Model .. 122

5.3.2 Nodes and Edges ... 124

5.3.3 Control Mechanisms ... 128

5.4 Modeling Scenario in Dyno .. 130

5.5 Pattern Language for Dyno ... 136

5.5.1 Service Platform Patterns .. 137

5.5.2 Pattern Drafts .. 140

5.5.3 Coordinated Community-Based Management Process................................... 151

5.6 Modeling Recommendations .. 156

C Instantiation and Evaluation .. 159

6 Instantiation ... 159

6.1 Conception of the Model Designer ... 160

6.2 Concrete Grammar .. 163

6.2.1 Concrete Morphology ... 164

6.2.2 Concrete Syntax .. 165

6.3 Conception of the Analyzer .. 169

Table of Contents

 XI

6.3.1 Analysis Environment ... 170

6.3.2 Analysis Plug-ins ... 172

7 Evaluation .. 177

7.1 Evaluation Approach ... 177

7.1.1 Composition of Sample Groups .. 178

7.1.2 Survey Design and Validation ... 180

7.2 Case Study Setting I .. 181

7.2.1 Preparation ... 181

7.2.2 Experimental Procedure .. 182

7.2.3 Findings ... 183

7.2.4 Conclusion ... 187

7.3 Case Study Setting II ... 188

7.3.1 Preparation ... 188

7.3.2 Experimental Procedure .. 191

7.3.3 Findings ... 193

7.3.4 Conclusion ... 197

D Conclusion ... 199

8 Summary and Discussion of Contributions ... 199

8.1 Critical Acclaim .. 200

8.2 Outlook and Future Work.. 203

E Appendix ... 205

Questionnaire ... 205

List of Figures .. 209

List of Tables ... 211

Glossary ... 213

List and Abstracts of Related Publications by the Author ... 221

References ... 228

Table of Contents

 XII

 1

A Foundations

1 Motivation

Service platforms have moved into the center of interest in both academic research and the IT

industry due to novelty and economic impact. Multitenant platforms now provide own or third

party software as metered on demand services (SaaS). The consumer benefits from increased

agility and flexibility in using configurable applications from various client devices that run over

a cloud infrastructure using virtualized network, server and storage capabilities [1-3]. Driving

factors behind the rapid growth of these SaaS-offerings are the immanent rapid deployment

times, reduced upfront implementation and minimized long-term overheads as compared with

traditional on-premise software [4]. Active participation of consumers and external suppliers in

the value creation process additionally accelerates the concept’s success [5]. Salesforce.com for

example, created a Customer Relationship Management product on demand as a first step. It then

added AppExchange as an online marketplace for customer applications and then extended the

open platform concept with Force.com, a development and deployment environment for third

party service providers. Similarly, companies like NetSuite opened their infrastructure to host

outside applications as well as their own services.

These service platforms exhibit network effects. Network effects are self-enforcing effects of

value generation, generated by causal loops of reciprocal interdependency between platform at-

tractiveness and third party value provisioning. As an example, a platform’s attractiveness to

third party service providers to provide services depends on the quantity of consumers subscribed

to the platform. From the perspective of the service providers, the subscribed consumers repre-

sent a value. Consumers on the other hand are only attracted, if the platform deploys a suitable

amount of third party services. Their value is the quantity of services, provided by the service

providers. However, once opening the platform to third party service provisioning, the platform

operator has to accept a certain degree of self-organization of the providers while giving away a

certain degree of control over service quality [6].

Attaining critical mass is another relevant factor. It describes the fact of a limiting threshold,

e.g., a minimal quantity of services or subscribed consumers required to incite a network effect.

Once a network effect is unlocked, it is the interplay of network participants, which further

evolves the value of the platform. In such a situation, the platform operator’s tasks focuses on

service management in pursuit of beneficially sustaining and growing the network effect [7].

However, network effects do not respond to simple linear relationships. They are characterized

by complex differential interdependencies of the various participants and activities in and around

the service platform [8].

A Foundations

 2

To be able to incite and control network effects, the platform operator needs to be able to manage

the flows of service provisioning and consumption. This requires a platform design that allows

for control without squelching self-organization. Self-organization is a necessary prerequisite to

network effects [9]. It also needs deployment and consumption environments that are – where

network effects can occur – able to respond to increased platform activity with suitable scalabil-

ity. Such a design is challenging due to the broad range of parameters, which need to be consid-

ered and to be successfully realized. A market study has shown that up to now, only a small set of

platform operators, offering selective cross-industry-applications have successfully mastered this

concept [10].

One way of improving this situation is to guide platform solution managers and platform ar-

chitects in conceiving a suitable architecture through an appropriate modeling language. Such a

language can support by providing

(a) a common base of representation to exchange and discuss ideas, thoughts, opinions or

objectives around an intended solution [11, 12];

(b) abstraction from the complete picture, retaining only the relevant parameters [13],

i.e. on platform conception, focused on harnessing network effects through appropriate

service management and hence improving the overall cognition process [14];

(c) active tool-based user guidance to improve efficiency in modeling [15];

(d) a pattern language representing reusable building blocks of structured experience [16,

17];

(e) computer-based model analysis and suggestion schemes for design improvement [18].

As of today, several modeling languages exist, which consider service platforms. None of

them gives exhaustive representation of those networks. In particular, none of them is able to

abstract platform design in a way that guides platform operators towards service manageability

through the modeling of processes, structures and mechanisms targeting the exploitation of net-

work effects in platforms and their surrounding ecosystems. Such a language needs to comprise

procedural elements, e.g., for the representation of the interplay between consumers, platform and

service providers as well as for structural elements, e.g., for demarking areas of influence on ser-

vices and involved players. The graphical modeling languages Service Network Notation (SNN),

Service Modeling Notation (SNMN) and e3value provide the closest existing rapprochement to

the requirement of a modeling language for network effects around service platforms. All three

languages model and analyze concrete relationships with specified service partners. Network

relations are understood in a very explicit way, focusing on aspects such as data or value flows,

relationships and business protocols. However, in the dynamic context of Cloud computing, net-

work effects originate in more indirect (i.e., implicit) patterns and relationships. They cannot be

directly modeled through service choreographies or process orchestration. Aspects of infrastruc-

Dynamic Network Notation Ulrich Scholten

 3

ture design or mechanisms of control, which foster self-organization of service platforms and

their ecosystems lack consideration. Responding to these requirements to support effective plat-

form design in view of enhanced service management for the harnessing of network effects is the

predominant goal in this thesis.

The present work responds to this requirement with the introduction of a graphical modeling

language supporting the design of service platforms. This language creates abstraction of planned

or existing platforms, retaining parameters relevant to service management. It highlights where

control or scalability is required and provides support in process design e.g., for the right place-

ment and parameterization of network effects. It provides further guidance throughout the process

of structural platform conception. It specifically focuses on the self-organization of suppliers and

consumers around service platforms, while maintaining suitable quality of service.

1.1 Related Research

This chapter gives a short overview of related research. There are many different approaches to

service networks around service platforms. Research by Eisenmann, Parker and Alstyne for in-

stance has a specific service platform focus, considering aspects of control and network effects.

However their research is oriented towards business models and service innovation with only

little or no consideration of service management from a technical point of view [19-22].

More technically-oriented research groups propagate the computational modeling of networks

‘as is’. Those concepts extract models in a bottom-up approach through the access, retrieval and

combination of globally distributed information. Examples are Open Semantic Service Relation-

ship approach (OSSR) or the Open Semantic Service Networks approach (OSSN). The objective

of OSSR is to model in a computer-understandable way various types of relationships within a

network [23]. OSSN complements OSSR through nodes to model the network itself [24, 25].

None of the above described research pursues the graphical modeling of service networks in

the context of service management. The closest in this specific research orientation are:

 the Service Network Notation with focus on the optimization of value in service networks

[26, 27];

 the Service Network Modeling Notation (SNMN) concentrating on the enablement of

service offerings, requests and provision (called service providings) between and inside

organizations [28];

 e3* (e3value / e3services / e3controls) focusing on qualitative analysis of value flows in

networks [29].

All three have in common that they model service networks as a set of nodes and edges in a

to be approach. This top-down consideration has the objective to investigate (local) optimums

A Foundations

 4

through a comparison of what-if scenarios [28]. Second, their orientation is procedural rather than

explanatory. Third, all models represent the biased viewpoint of a modeling company (protago-

nist). In other words, all models search for the protagonist’s local optimum. They also have in

common their goal to assist the enhancement of value generation in a network. All three models

consider and focus on enhancing value chain relationships of economic value e.g., the economic

value of a service or of financial transactions. The notations enable selective modeling restricted

to the relationship aspects of economic value. In comparison to intended complete information

aggregation of OSSN and OSSR, those are weak relationships [23]. The focal points of action for

value enhancement in the three approaches are different.

The Service Network Notation (SNN) models abstract business relations within service net-

works through specific symbols, i.e. nodes representing business relationships. The relationships

(edges) are abstracted to the limited view of offerings and revenues, complemented by correla-

tions, which relate edges of the same business process. Service networks can be mapped to Busi-

ness Process Models in a semi-automatic process. For that, the authors extended the BPMN stack

by an additional top layer of Service Networks, related sets of Business Processes. SNN focuses

the composition of new services through networks of existing services from a SOA perspective

[23, 26, 27].

The Service Network Modeling Notation (SNMN) builds on SNN. Its overall orientation is to

better align IT and business perspectives with the goal of improving the enablement of service

offerings, requests and provision in service networks [28]. SNMN provides direct integration into

the business process layer (BPMN). The notation provides network visualization with focus on

contractual relationship and service offerings. Focal attributes like service description and con-

tract (describing the SLA) have explicit representation in the model. Through a hypergraph-based

representation, SNMN also depicts participant internal relationships, i.e. offerings and requests of

the same service and participant. In addition it represents service providing dependencies, relat-

ing all edges of the same value flow. SNMN offers alternative role-based or participant-based

views. The use of nodes and edges finds further discussion in the context of the design process of

the Dynamic Network Notation in Part B.

The e3* theory and tool-suite is the basis and the umbrella for a family of modeling notations

for qualitative modeling and analysis of relationships within networks [30, 31]. The basic lan-

guage e3value focuses on the visualization of flows of value objects (goods, services, payments)

between actors. E3control has specific focus on modeling, preventing and correcting violations of

contractual obligations and models those through explicit representation [29]. A specific com-

plement for services provided online is e3service. It is conceived to match customer needs and

services through reasoning technologies [32]. Part B of this thesis takes on and discusses further

representation of control mechanisms in e3control, when comparing the implementation and

visualization of control mechanisms for the Dynamic Network Notation.

Dynamic Network Notation Ulrich Scholten

 5

Table 1: Comparison of related work

Table 1 gives comparative overview of the three notations, focusing on scope, representation

and main modeling elements. All three graphical network notations support the modeler in the

design of service platforms. SNN, SNMN and e3* allow for enlightenment of different aspects in

the context of locally optimized network modeling. The aspect of network effects however does

not find consideration. Given the importance of those effects to the success of service platforms,

an additional complementing notation is important, which abstracts respectively relevant

parameters.

1.2 Main Contributions

Solution managers and platform architects need to be able to model the above described fea-

tures and phenomena. In the present work, the word harnessing stands for exploiting outcomes

through directed manipulation. Currently, this is not possible, as academia lacks a dedicated lan-

guage that allows for the modeling of network effects and specific mechanisms to harness them.

The contributions in the present work give an answer to the following question:

How can a modeling language support the design of service platforms, targeted at harnessing

network effects?

A Foundations

 6

As main contributions, the present work provides the following:

 Conceptual model on service management in platforms (constructs and model) – The

work provides and conceptualizes structures and processes that represent the multiple

relationships in and around platforms, leading to network effects as well as control

mechanisms enabling supportive service management.

 Dynamic Network Notation (model) - Dyno is a graphical modeling language, seam-

lessly integrating the conceptual model for modeling service platforms, focusing on

creating, stimulating and harnessing network effects. It models relevant structural and

procedural aspects. Structural aspects comprise areas of staged authority or environ-

ments with scalability attributes. Procedural aspects include influences and transac-

tions between participants of platform ecosystems and (cooperative) activities or caus-

al loops. In response to the goal to create grounds for service management and de-

pending on contextual feasibility, the language visualizes and allocates specific control

mechanisms.

 Service platform pattern language and repository (model) – The language allows for

the formation of a reusable base of expertise and provides a common vocabulary to

communicate concepts as well as to explore design alternatives. The contribution ex-

emplifies drafts of patterns. In addition, this contribution suggests a coordinated com-

munity-driven process to develop and evolve a repository for these patterns.

 Dyno editor, implementing the Dynamic Network Notation (instantiation) - This con-

tribution provides exemplary implementation of the editor. In addition the contribution

includes an analyzer with exemplary analyses. This contribution shows how the ex-

pressiveness of the Dynamic Network Notation allows for further ongoing analyses

and thus for the additional guidance of the modeler.

1.3 Research Method and Thesis Structure

The present work conducts research based on the Design Science methodology as it appears to be

notably appropriate to achieve the stated contributions. The key outputs in Design Science are

artifacts. Artifacts as understood in Design Science refer to the entirety of constructs (terminolo-

gy and symbols), models (abstractions and representations), methods (algorithms and practices)

and instantiations (implementations and prototype systems) produced as outcome of a research

process. By providing design concepts as well as evaluation methods, Design Science allows for

the building and evaluation of artifacts conceived for clearly identified and defined purposes.

Through instantiation, the methodology provides proof of concept by construction [33-36].

Dynamic Network Notation Ulrich Scholten

 7

The remainder of this section first describes the applied research method (Subsection 1.3.1) and

then outlines the thesis’ structure (Subsection 1.3.2).

1.3.1 Research Method

Whereas the presentation of results in the present work follows the consecutive steps of Design

Science, the research process, which led to these results, was an iterative process of building arti-

facts, intervention and learning and enhancement, as shown in Design Thinking [37] and as sug-

gested by Sein, Henfridsson et al. [38] in the Action Design Research approach. Scholten re-

vealed the first version of control mechanisms through data elicitation, surveys and experiments

(Section 2.1). They evolved over a research period between 2009 and 2013 through a cyclical

research process. This cyclic research process consists of the following steps [39]:

 Data collection (diagnosis) through the 5 study designs introduced in Chapter 2.

 Suggestion of categorizations (action planning); those categorizations are the result of

a process of cyclical discussion with researchers and with representatives of target

groups (solution managers respectively platform architects).

 Tests through modeling (intervention / action taking); in this phase the modeling of

sample cases is used to reveal whether all known mechanisms can be represented.

 Evaluation and reflection (assessment and learning) through critical discussions at

conferences and workshops as well as with representatives of target groups.

 Restart or termination, when the results are satisfactory.

Scholten presented an initial categorization at several conferences and workshops in 2010 and

2011 [40, 41]. Critical discussion on an evolved solution [42] at the occasion of the

INFORMATIK 2011, Leipzig led to a correlation with the control modes suggested by Kirsch

[43]. The categorization of control mechanisms as suggested in the present work were first sub-

mitted and critically discussed at SOCA 2012 [44]. Further developing those, the present work

correlates control mechanisms, modeling elements and further details on each element. In addi-

tion it introduces the service platform provisions, an evolution of the concept of co-regulative

control from the initial set of suggested mechanisms [40]. The appendix (Part E) includes an ex-

haustiverelated list of publications, authored or coauthored by Scholten.

A Foundations

 8

1.3.2 Thesis Structure

The thesis’ structure reflects Peffers, Tuunanen et al.’s [45] Design Science Research method on

how to apply and sequence Design Science. The Design Science Research method proposes the

following structure:

 Problem identification and motivation;

 Definition of the objectives for a solution;

 Design and development of a solution;

 Demonstration and evaluation (instantiation).

Part A of this thesis opens with the present motivation, outlining the reasons for this research

work, insights into related research, an overview of its contributions and an explanation of the

research methodology. Chapter 2 addresses the first stage of the Design Science Research method

- problem identification and motivation - uncovering concrete research requirements. It closes

with the formulation of respective research questions and goals. To do so, the author conducts a

set of qualitative and quantitative surveys targeted at service management on service platforms,

which provide a holistic impression of network-related challenges. Quantitative data, extracted

from a longitudinal study on web-service intermediaries, allows the discovery of relationships

that are not obvious to the researcher's perception at first glance. Qualitative data from case stud-

ies, on the other hand, is helpful to understand “the rationale or theory underlying relationships

revealed in the quantitative data” [46].

Prior to addressing the actual formulation of objectives for a solution, the thesis lays the foun-

dations of research. Correspondingly, Chapter 3 introduces and structures language engineering

as well as graphical language engineering specifically and gives an introduction to the theory

related to network effects and control.

Part B is dedicated to the development of the Dynamic Network Notation and its pattern lan-

guage. It starts in Chapter 4 with structuring gained knowledge into a conceptual model, which

then lead to the elicitation of functional design requirements for the graphical modeling language.

The subsequent Chapter 5 produces models and methods as artifacts. Explicitly, it develops the

thesis’ central artifact with an abstract grammar (morphology and syntax) and the corresponding

non-formalized semantics for the Dynamic Network Notation. The illustrating Dyno-models de-

veloped within this chapter make use of this graphical modeling language to represent real world

scenarios. The chapter continues with the complementing pattern language and repository as an

evolving and reusable base of experience that allows modelers to learn from and to share

knowledge on best practices.

Part C is targeted at instantiating and evaluating the thesis’ artifacts. Instantiation stands for

the actual system implementation, allowing for demonstration and evaluation of feasibility and

suitability. In this regard Chapter 6 instantiates the Dynamic Network Notation by building an

Dynamic Network Notation Ulrich Scholten

 9

exemplary editor. This editor allows solution managers and platform architects to model and ana-

lyze service platforms and their surrounding dynamic networks. In Chapter 7, various experts

evaluate quality and usefulness of the Dynamic Network Notation and its editor, as well as their

ability to respond to the research requirements and research hypotheses, formulated in Part A.

Part D closes the present work by critically discussing the research results (Section 8.1), and

providing an outlook on future research work (Section 8.2).

Figure 1 gives a graphical overview on the present work, representing chapters, contributed

artifacts and thesis structure.

Figure 1: Outline of the present work

A Foundations

 10

Dynamic Network Notation Ulrich Scholten

 11

2 Problem Identification

This chapter analyses service management on platforms with specific focus on harnessing net-

work effects. It first presents the research design for data acquisition (Section 2.1) and introduces

basic terms and definitions (Section 2.2). The Sections 2.3 to 2.7 identify relevant problems for

this thesis. It consolidates the findings through the formulation of research requirements (Section

2.8) with respect to the design of a graphical modeling language, specific to service management

on platforms in view of network effects. These research requirements lead to the articulation of a

research hypothesis (Section 2.9) around the requirements of such a language.

Figure 2: Structure of the chapter on problem identification

Figure 2 gives an overview of the detailed workflow and revealed research requirements in the

present chapter. It starts with a definition of basic terms required for the subsequent problem

identification (Section 2.2). It then continues with the categorization of the various forms of ser-

vice intermediary concepts into groups (Section 2.3). The analysis discovers three zones of staged

A Foundations

 12

authority as relevant factors of differentiation within various intermediation concepts. The subse-

quent section investigates aspects of control through the platform operator and resulting implica-

tions on quality within the different service intermediary types (Section 2.4). Then the work looks

at concepts of autonomy of network participants and resulting self-organization (Section 2.5).

It then continues researching the resulting service management dilemma immanent to service

intermediaries: Service intermediaries are on the one hand tempted to favor self-organization of

service providers, allowing for rapid growth and adaptability without the bottleneck of central

control and organization (Section 2.5). This is countered by a need for central control to guaran-

tee service quality. Section 2.6 consolidates both into one integrated concept of managed self-

organization. Then the chapter sheds light on the question of what is required to start off a net-

work effect (Section 2.7). Section 2.8 and Section 2.9 formulate the resulting research require-

ments and research hypotheses.

2.1 Research Design for Data Acquisition

For the identification of necessary data, the author conducted five different kinds of research de-

sign:

Literature Review

Scholten conducted a literature review focused on Internet based service intermediaries and net-

worked business models. This survey provided general insight into research, related to service

platforms and provided terminology. It enriches the remainder of this chapter with related theory

and examples.

Comparative Longitudinal Study

In a second survey, the author conducted a comparative longitudinal analysis on service in-

termediaries, analyzing and evaluating their processes with respect to third party service deploy-

ment and federation as well as their performance with respect to attaining sufficient numbers of

third party services and insuring quality of service. The study compared the intermediary opera-

tors SeekDa, WebServiceList, Xmethods, RemoteMethods, eSigma, and StrikeIron Market Place,

backed with a longitudinal comparison of quality of service intermediated by SeekDa and StrikeI-

ron Market place. The survey deliberately used the sample group that was used in a related publi-

cation by Legner [47] to be able to consolidate findings from literature and from this study. The

sample group was extended by the intermediary SeekDa, as it provided an additional intermedi-

ary design. The study design has a qualitative and a quantitative dimension. In the qualitative

dimension, the survey explores the companies’ websites (i.e. the terms and conditions) to gain

Dynamic Network Notation Ulrich Scholten

 13

information on the intermediaries’ architectures and service management approach. The quantita-

tive part had a longitudinal research design. It was based on 170 log-files, acquired from an

online database of monitoring data. The chosen set of log-files documented availability per ser-

vice over a minimum of 6 months. Grouping service set of logs per service intermediary allowed

correlations of quality of service to be deduced, for example of availability with specific service

intermediation concepts. The results support Section 2.3 with respect to the categorization of

service intermediaries. They further serve Section 2.4, when relating service quality, the power of

monitoring quality of service and the power to control supplied quality of service of third party

services. The results also find consideration in Section 2.7, when discussing base value and criti-

cal mass. For further reading on this survey, please refer to Scholten, Fischer et al. [48]

Experiments on Three Selected Service Platforms

Scholten experimented on the platforms Force.com by Salesforce.com, SuiteApp by Netsuite and

Facebook Platform by Facebook. In the study design, experimentation meant to deploy an own

sample service on the platform to gain a deeper insight into the control and release mechanisms

as well as on the platforms’ provisions. These experimental findings were complemented through

analysis of the platforms’ terms and conditions. The findings of this survey find exploitation in

Sections 2.4 and 2.5, when discussing self-organization and control as well as in Section 2.6

when integrating both.

Explorative Analysis of Successful Service Platforms

Scholten revealed information on possible structures and control mechanisms with respect to

harnessing network effects, through an extensive analysis of successful service platforms, con-

ducted between 2009 and 2013. Two alternative factors justified the attribute successful. Either

their financial success in the service platform area, substantiated through published investigations

[4, 10] or mechanisms or structures which successful accomplish a specific goal e.g., the collabo-

ration software as a service provider Trello [49], who applies specific structure and mechanisms

to achieve network effects even with a small number of users. In particular, the present work re-

fers to the following service platform operators (in alphabetical order): Appirio Inc.1, BOINC2,

Dropbox Inc.3 Google Inc4.; Facebook Inc.5, Intensify Inc., Intuit Inc.6, LongJump Inc.7, Netsuite

1 http://appirio.com/ retrieved 16.02.2013;
2 http://boinc.berkeley.edu/, retrieved 25.03.2013
3 https://www.dropbox.com/ retrieved 16.02.2013;
4 http://www.google.com/ retrieved 16.02.2013;
5 http://www.facebook.com/ retrieved 16.02.2013;
6 http://www.intuit.com/ retrieved 16.02.2013;
7 http://www.longjump.com/ retrieved 16.02.2013;

http://boinc.berkeley.edu/

A Foundations

 14

Inc.8, Salesforce.com Inc.9, SAP AG10, S.Chand Edutech Inc.11, Trello Inc.12. Some of the quoted

companies, e.g., SAP AG or Google operate several business models, including non-Cloud ori-

ented activities. When speaking about such an operator, the present work always names the spe-

cific service platform. Definition 20 provides a definition of the term service platform, embracing

all above described companies’ approaches of intermediation. This definition is substantiated

with findings in Sections 2.2 and 2.3. As a working definition, service platforms are providers of

metered services on demand over the Internet.

Experiments on the Research Platform Agora

In the frame of the TEXO / Theseus project13 i.e. the subproject SVN14, May, Scholten et al. [50]

analyzed the usability of explicit and implicit feedback to improve service quality (lead: Norman

May). The team experimented on the research platform and e-market pilot AGORA. The pilot

platform instantiates processes of discovery, configuring, ordering and delivering services includ-

ing monitoring of pre- in- and post-delivery activities. The monitoring of experimental test con-

sumer behavior allowed retrieving necessary feedback on consumer self-organization guided

through feedback (Section 2.6). The team conducted analysis and adaptation of the services and

service portfolio manually based on the information provided in analytic reports. Even though

manually accomplished, comparison proofed a modification of service quality in test loops based

on implicit and explicit feedback provided to service providers. At the time of write-up of this

thesis, the integration of tools for a more automated process of service portfolio optimization is

still under development For further reading on experimental setup and analysis results, please

refer to May, Scholten et al. [50].

8 http://www.netsuite.com/ retrieved 16.02.2013;
9 http://www.salesforce.com/ retrieved 16.02.2013;
10 http://www.sap.com/ retrieved 16.02.2013;
11 http://www.schandedutech.com/ retrieved 16.02.2013;
12 https://trello.com/ retrieved 16.02.2013;
13 http://www.igd.fraunhofer.de/Institut/Abteilungen/IVA/Projekte/THESEUS-TEXO
14 Cooperation between Karlsruhe Institute of Technology and SAP AG, http://www.aifb.kit.edu/web/SVN/en, retrieved

16.02.2013;

Dynamic Network Notation Ulrich Scholten

 15

2.2 Basic Terms and Definitions

This Section introduces major terms and definitions, which are generally used throughout this

thesis. The definitions are grouped into three subsections: Subsection 2.2.1 specifies terms and

their understanding in the area of services and service management. The subsequent subsection

2.2.2 enlightens meaning and terminology around network effects. Lastly, subsection 2.2.3 ex-

plains the target groups addressed by the artifacts provided through this thesis and positions those

groups in the context of corporations. Being positioned in the field of language engineering, the

present work dedicates a specific section to this discipline (chapter 3.1) before applying it in

Part B.

2.2.1 Definitions Related to Services

Software-as-a-Service groups all applications, running in the cloud and accessible to end-users as

metered services on demand [1, 3]. These end-user applications comprise of application services.

These building blocks could be basic applications like OpenId, or of composite nature, e.g.,

OpenSocial [3]. Important in this thesis is not size or software design (like being RESTful or

SOAP-message based). It is their federation and supply-mechanisms over more or less distinct

networks of service providers and consumers, which defines the respective service management

design. In the remainder of the thesis, the term service stands for any of those services. In cases

where a more fine granular consideration is required, like in the subsequent analysis of Web ser-

vice providers or when exemplifying software-as-a-service platforms, terminology becomes

technically specific. This thesis uses the following definition:

Definition 1: A service stands for any kind of deployed software, provided over the Internet by

service platforms on demand.

Management of those services has the goal of providing value to consumers through satisfac-

tion of their service requirements [51]. Service management is about managing the whole service

life-cycle, including the service strategy, service design, service transition, service operation and

continual service improvement. Correspondingly, the goal of service management is to make

capabilities and resources available that bring value to the consumer.

Definition 2: Service management in platforms describes the activity of managing the whole ser-

vice life-cycle, service design, service transition, service operation and continuous service im-

provement with the objective to make capabilities and resources available that are required by

the consumer.

A Foundations

 16

The ITIL framework of best practices in service management provides a suitable definition for

this newly introduced term service value in the context of software services: Value combines

utility and warranty. The term value circumscribes those service attributes with positive effect on

performance of actions, objects, and tasks. Warranty describes how utility is guaranteed through

appropriate service availability, capacity, continuity and security [51].

Definition 3: Service value describes those service attributes with positive effect on perfor-

mance of actions, objects and tasks.

The perception of value depends on the addressee. A potential consumer who is in need of a

specific service might attribute a higher notion of value to this service than somebody without

this specific need. A more macroscopic perspective of value considers the value contribution of a

whole platform in respect of defined subsets. In analogy to Definition 3, service platform value

can be defined as follows:

Definition 4: Service platform value denotes those attributes, arising from the whole platform or

from defined subsets, which have positive effect on the performance of actions, objects and tasks.

Section 3.2 complements this value consideration for whole service platforms, substantiated

through dynamic market theory. When not specifically distinguishing between value of services

and value of service platforms, the present work simply uses the short term value.

Section 2.2.2 of this work signals that this value contribution is not necessarily only originat-

ing from the platform operator but might be provided from external participants or co-created

through interaction with external participants. The present work calls a value flow into the plat-

form or within the platform a transaction. The word transaction captures well the flow and ex-

change process of rights of property and liberty to act based on contractual agreement [52]. This

might include e.g., the transfer of services, developed by external participants. Transactions may

also include the transfer of anything which is eventually turned into service value on the platform

as result of a process of co-creation or interaction. For example an increase in subscription of

users to a service is a trust building and hence values creating positive effect as other users per-

ceive the increase in users as a sign of quality of service. The remainder of this thesis refers to

any kind of value creating activity on the platform and in interaction with the platform as activity.

Dynamic Network Notation Ulrich Scholten

 17

Definition 5: Transactions describe any kind of transfer into, from or within the platform, which

eventually could create or reduce value in the platform.

Definition 6: Activities are value creating activities on and in interaction with the platform.

2.2.2 Definitions Related to Network Effects

Network effects play a central role in this thesis. Prior to part B, Section 3.2 provides detailed

system-theoretical background, which serves as foundation for the subsequent language engineer-

ing. This subsection therefore focuses on definitions, which are required in the remainder of

Chapter 2. Rohlfs [53] introduces a theory where he communicates the idea of interdependence of

demand, substantiated with the example of the telecommunication industry. Also based on the

analysis of the same industry Oren and Smith [54] speak of demand externality when a

subscriber’s benefit depends on the total quantity of subscribers. Katz and Shapiro [55]

generalize this theory and use the term network externalities for positive external consumption

benefits to the adoption of a specific technology. Continuing on this line of thinking, Shapiro and

Varian [56] use the term network effects, when describing the phenomenon that products only

become valuable when large numbers of people are using them. They discover that many digital

goods are subject to network effects. Sterman [8] shows that network effects can be strengthened

or weakened by complementary network effects. Rochet and Tirole 2003 [57] reveal that in many

cases where network effects occur, two or more distinct participant groups benefit from each

other. They term the business model behind two or multisided markets or platforms. Eisenmann,

Parker and van Alsthyne speak of demand-sided network effects for those effects discovered by

Rohlfs respectively Katz and Shapiro. They find out that platforms, which open for external sup-

ply, can encompass cross-sided network effects [19, 22, 58]. In these effects, supply side and de-

mand side are interdependent.

A key notion of network effects is the self-organization of the concerned participants. The

term self-organization originates from system theory and non-equilibrium physics, i.e. from the

research of Nicolis, Prigogine et al. [59, 60]. They revealed that in self-organizing systems small

changes can incite amplified network effects. They see scope of application of that theory on

physical as well as on social systems. De Wolf and Holvoet [9] describe self-organization from a

theoretical perspective as an adaptive process, where a system organizes and acquires structure

without external control. In their view, structure can be spatial, temporal or functional. Self-

organizing systems have a series of features which favor network effects [9, 59, 61].

A Foundations

 18

 Autonomy – the parts of the system act without central control;

 Adaptability – the parts of the system are able to cope with changes autonomously and

rapidly and align to a new temporal equilibrium. The system as a whole becomes

robust to perturbations;

 Sensitivity to change – the system is sensitive to a changing requirement and can react

rapidly. This requires the prerequisite to keep the parts of the system in an instable

condition. Nicolis and Prigogine [59] call this a far-from-equilibrium state.

The self-organizing autonomous participants represent the platform ecosystem. The described

service platforms benefit from their autonomy, adaptability and sensitivity to change. The sensi-

tivity to change however requires the provision of suitable information to the participants in the

platform ecosystem as a prerequisite to reactivity.

The provision of information about activities on a platform to participants that are active on a

platform is called feedback. The participants’ reaction on this information causes reciprocity,

meaning modified activity on the platform leading to renewed feedback. Section 3.2 goes deeper

into this with more theoretical background and pinpoints the far-from-equilibrium state in a phase

plot of a platform’s market share as a function of its participants’ involvement (Figure 9).

Definition 7: Feedback is the targeted provision of information on platform-based activities to a

participant, active in and in reciprocal relationship with the platform.

Definition 8: Platform ecosystems are sets of autonomous participants around service platforms,

which are in reciprocal relationship with the latter.

Definition 9: Self-organization in the context of service platforms describes the line-up of plat-

form ecosystem participants over time to a temporary situation of equilibrium, attained through

feedback.

Definition 10: Network effects describe the reciprocal relation between the value of a service

platform and the quantity of involved service consumers and service providers. Network effects

are driven by self-organization of the platform ecosystem.

An important technical requirement to the parts of the platform which are affected by network

effects is scalability. Neuman [62] describes scalability in distributed systems as a system’s abil-

ity to “handle the addition of users and resources without suffering a noticeable loss of perfor-

mance or increase in administrative complexity.” According to Neuman, scale has three dimen-

Dynamic Network Notation Ulrich Scholten

 19

sions: the number of users and objects that are part of the system, the distance between the

farthest node and the number of organizations that exert control over the system. Scale affects a

system in various ways, i.e., reliability of the distributed system, load that needs to be managed,

administration of an increasing amount of nodes and heterogeneity of architecture, which is likely

to grow with an increased amount of nodes [62]. Binnig, Kossmann et al. [63] state the require-

ments that cloud services should scale in a linear way and infinitely with constant costs per web

interaction. As a means to measure scalability the authors suggest increasing the web interactions

per second and counting the produced responses in a specific time interval.

In the context of service platforms, the present work suggests the following definition for

scalability:

Definition 11: Scalability describes to ability to meet increased workload, through a planned in-

cremental increase of capacity

Capacity to scale depends on various factors, in particular on suitable compute and storage

capacity, but also on the way that services and networks can handle increased numbers of users.

Elasticity refers to the system’s capability to handle sudden increases and decreases in load [1].

Such fluctuations are not related to network effects as those are characterized through inert

movements in specific directions (section 3.2 deepens this aspect). Requirements of elasticity

therefore rather depend on the specific business models. As an example, if a service handles sala-

ry management and payments, it can be expected to have high loads between the 25th and the end

of a month and less during the remainder of the time. In such cases, the platform architect needs

to conceive suitable mechanisms. Those activities, however, go beyond the scope of this work.

2.2.3 Definitions Related to the Addressed Target Groups

The present work states as target group for the graphical modeling language those persons in

charge of design and evolution of service platforms. As corporate structures are diverse, the tar-

get profile needs to be clearly defined. The following paragraphs look at organizational structures

to help locate and define the targeted job profiles. It requires a short look at theory and best prac-

tices in organizational management.

Most organizational structures are represented by a company board defining corporate strate-

gy, vision and mission. Operationalization and execution of these goals happens under a director

in charge, generally referred to as Chief Executive Officer (CEO). Responsible for service plat-

form implementation and management in functionally structured companies are Chief Technical

Officer (CTO) and Chief Marketing Officer (CMO), both reporting to the Chief Executive Of-

ficer (CEO). The CTO is in charge of strategic corporate decisions at the intersecting roles of

A Foundations

 20

technical expert and of business strategist. His task is to choose technologies based on their like-

lihood to generate the highest rate of return and growth in the context of a business strategy [64].

The CMO is in charge of strategy implementation with focus on solution, price, distribution

and communication. In platform businesses, solutions, technical infrastructure and communica-

tion are all part of the technical platforms, leading to overlaps of these positions. Solution manag-

ers or product managers operationally implement those tasks. They have to take into account

expectations coming from diverse corporate stakeholders, including research and innovation,

development, sales and marketing and support. External stakeholders are partners and consumers,

as well as potential consumers, competitors and analysts [65]. Depending on the company struc-

ture, product managers report to CTO, CMO, or in a matrix structure to both.

Companies with strong relevance to information technology introduced the position of a Chief

Information officer (CIO), either alongside the CTO or instead. Trenner [66] identifies three

types of CIO: the role of a function head whose profile is mainly the operational management of

corporate IT, the transformational leader focusing on change management within corporate pro-

cesses and their enablement through IT, and the business strategist. The latter has the highest

level of responsibility. His focus is to steer corporate strategies in pursuit of accomplishing cor-

porate goals. Given the importance of information technology for their corporate success, IT-

focused companies like Google choose another approach and put the CEO in person in the lead of

product development and technical strategy15.

The described options reflect established solutions and trends. They cannot be exhaustive.

However, they elicit that various job profiles may be in involved in modeling or designing ser-

vice platform. Degrees of responsibility and involvement depend on the respective corporate

structure. But all constellations occupy two roles albeit different denominations: the role of the

analyzer who identifies economic parameters to be considered in the platform design and the

platform architect who is in charge of designing the platform technically.

Definition 12: The solution manager brackets those job profiles, which identify and communicate

business requirements, opportunities and goals for a service platform.

Definition 13: The platform architect brackets those job profiles in charge of the overall tech-

nical platform design.

15 https://www.google.com/intl/en/about/company/facts/management/

Dynamic Network Notation Ulrich Scholten

 21

2.3 Service Intermediaries

In pursuit of defining Cloud computing ‘to enhance and inform the public debate on cloud com-

puting’[1], the National Institute of Standards and Technology (NIST) provides a categorization

of cloud service models into SaaS, PaaS and IaaS. This serves well its purpose of providing

general overview on Cloud computing. In an early classification on Internet-based distribution

models, Tapscott [67] classifies networks of legal entitites in the web in accordance to their level

of integration and control into agora, aggregator, alliance and value chain. Agora stands for self-

organized electronic marketplaces with negotiable pricings in contrast to the more hierarchically

organized aggregator. For business models of higher integration, Tapscott [67] defines the alli-

ance as a self-organized value creating community, while the value chain is the most hierarchical

and highly integrated form of a distributed network. Meier and Ullrich [68] build on this taxono-

my, dividing the value chain into integrator and distributor. In contrast to distributors, integrators

host services within their proper infrastructure and have detailed insight into and direct influence

on them. Integrators can host 3rd party services as well as proprietary services. With the example

of web-service intermediaries, Legner [47] provides a rather functional, tripartite taxonomy con-

sisting of electronic Market (e-market), electronic hub (e-hub) and infomediaries. Legner

suggests as differentiating parameters: information provision, customization, matching, transac-

tion, assurance, logistics, collaboration, integration and standardization. Legner’s [47] group of

electronic markets unifies agora and aggregator into one single category. E-hubs are intermediar-

ies that facilitate supply chain collaboration. Complementing this categorization with Meier and

Ullrich’s [68] category of integrators provides the best fit. This extended categorization allows

for technical differentiation in view of the intermediaries’ capacities to exert control, or to allow

for self-organization. Table 2 summarizes the categorization.

Table 2: Technically oriented categorization of service intermediaries

A Foundations

 22

This thesis suggests the term stakeholding power when talking about the platform operator’s au-

thority over quality of offered services.

Definition 14: Stakeholding power describes the degree of authority of a platform operator over

an ecosystem participant or activity.

Looking at stakeholding power from an architectural perspective Figure 3 demarks three areas

of staged authority for intermediaries related to supply infrastructure and in the context of the

present longitudinal analysis.

Definition 15: Control area is the section, where the platform operator can exert full stakehold-

ing power through enforcement. He can observe and steer all events and structures within the

control area

Definition 16: Influence area is the subsection of a platform ecosystem, where the platform oper-

ator can only exert limited stakeholding power through incentives. He cannot observe but only

inquire information on events within the influence area.

Figure 3: Areas of staged stakeholding power

Dynamic Network Notation Ulrich Scholten

 23

Definition 17: Noise area is the subsection outside the platform ecosystem, where the platform

operator has no stakeholding power.

The term control, used in this context, originates in control theory (Foellinger 1984) and ex-

ceeds the meaning of Kontrolle in German or contrôle in French, which are closer to verification.

Definition 18 terms control in the context of service management on platforms.

Definition 18: Control describes service management actions by the platform operator in order

to change a set of parameters from a current status (actual value) to a target status (setpoint).

Control in a platform context operates as a closed-loop, meaning with monitoring feedback in the

context of a regulatory process. The mechanisms which are used to control such a process are

called control mechanisms.

The following examples illustrate this understanding. Infomediaries correspond to type a) in

Figure 3. The consumer choses cooperation with the intermediary; he is therefore placed in the

influence area. The services, which are simply crawled by the infomediary lie outside the influ-

ence area. E-hubs do not have access to any data traffic, while federating a service. However,

both consumer and service provider actively choose cooperation with the e-hub. Therefore both

are located in the influence area. This corresponds to type b) in Figure 3. E-markets (type c) rep-

resent the first supply concept with limited enforcing authority. E-markets can control and tab all

traffic between the client and the service provider(s), as it is routed through the control area. The

Integrator (type d) is omniscient to all traffic coming from and going to the client. He has enforc-

ing power over the service as it is deployed within the control area. However, this omniscience

and stakeholding power shrinks, once the service is of a composite nature with services outside

the platform’s control area (dotted line and service).

Services deployed within the control area might request services outside (tier-(n+1)-success).

Although tier-(n+1) services are of certain risk to quality, none of the analyzed platform operators

ruled-out loose service coupling with tier-(n+1) services. To ensure proper quality of service of

third party services within their own platform in spite of their composite nature, the platform op-

erators either prescribed the application of a programming specification or even of a program-

ming environment. When choosing a programming specification, the platform operator provides

technical programming guidelines, mostly supported by tools and templates, allowing for a

smooth integration of services into the platform. In such cases, the platform operator needs to

enforce its directives in a second step through a compliance test, after the provider has uploaded

the ready-made service. In the case of a programming environment, the service development

takes place within the platform environment and can be continuously tracked. Technical non-

compliance at deployment time can be ruled out by filtering (details explained in the subsections

A Foundations

 24

on control mechanisms). But further to such pre-filtering, the platforms need to manage non-

compliance to quality requirements throughout operation time by permanent monitoring and rele-

vant control mechanisms. The programing models and environments have also a role in facilitat-

ing QoS-monitoring.

2.4 Central Control and Quality

The above Sections showed that different designs of intermediation lead to different levels of

authority (stakeholding power) on the activities of service providers. This section analyses, the

extent to which the different types of intermediation were able to ensure quality of service.

Lewis and Booms [69] define quality of service as a measure to describe the match of service

delivery and consumer expectations. Service delivery involves a contractual relationship, com-

prising a set of service levels to express a consumer’s demanded service quality [70]. The dimen-

sions of service quality depend on the domains of application. Parasuraman, Zeithaml et al. [71]

derive parameters for service quality for business-oriented services. They include parameters

such as reliability, responsiveness, competence, courtesy or credibility. Keller and Ludwig [72]

as well as O'Sullivan [73] researched quality of online provided services, in particular of Web

services. In their analysis, the monitoring of technical parameters during service delivery (e.g.,

response time or throughput) has been focused to shed light on the gap between expected and

delivered service quality. Maximilien and Singh [74] as well as Vu, Hauswirth et al. [75] define

QoS-attributes such as service reputation and endorsement as parameters for service discovery.

Kalepu, Krishnaswamy et al.[76] described service quality as degree of compliance of a service

during service delivery with the previously advertised Service Level Agreement (SLA). Cardoso

and Sheth [77] analyze quality of composite services which are generated within a network. They

include attributes such as services to be delivered, deadlines, quality of products, and cost of ser-

vice.

The present work builds on the Web-service Quality Model WSQM [78], for several reasons.

First it is already focused on services, supplied via the Internet (however originally written for a

very special type of service). Second, it integrates functional and non-functional aspects, which

give a necessary holistic view, and which integrates technical as well as economic viewpoints.

The present work regroups the WSQM’s quality factors into more coarse granular categories of

quality parameters. The reason for this restructuring is the intent to cover all subject areas of

quality, which are relevant in the context of services delivered via service platforms.

Dynamic Network Notation Ulrich Scholten

 25

The thesis simplifies them to provide better clarity i.e. through reduction of the quality parame-

ters from 86 down to 21 (Table 2).

 Business Value Quality for economic and functional consideration (e.g., service sus-

tainability);

 Service Level Measurement Quality describing user perception on how fast a service is

provided and how stable it is. Those parameters are related to design of service and

deployment environment (e.g., availability);

 Business Process Quality describing the ease of service integration into other process-

es (e.g., collaborability);

 Suitability for standards describing compliance to platform service specifications (e.g.,

conformability);

 Security Quality describing the level of built-in security mechanisms within a service

(e.g., trace management);

 Manageability describing the level of observability (introspection), the ability to write

to a system and to a system’s internal information (controllability) as well as of the

provisioning of management information to platform operator and consumer

(notification) [78].

Definition 19: Quality of service describes the match of service delivery with functional and non-

functional consumer expectations. Quality of service includes the quality groups Business Value

Quality, Service Level Measurement Quality, Business Process Quality, Suitability Quality, Secu-

rity Quality and Manageability Quality.

a) Web service samples 1-100, different intermediaries b) Web service samples 1-70, only

Integrator (StrikeIron)

Figure 4: Comparison of Long-Time Availability of Web Services as ordered sets,

structured by increasing availability

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0 10 20 30 40 50 60 70 80 90 100

A
v
a
ila

b
ili
ty

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0 10 20 30 40 50 60 70

A
v
a
ila

b
ili
ty

A Foundations

 26

The conducted longitudinal study analyses a sample set of Web service intermediaries. The sam-

ple set includes one infomediary (SeekDa) and one integrator (StrikeIron Market-Place). The

analyzed companies are comparable with respect to size and maturity. The analysis’ objective is

to draw conclusions on dependency between service quality and the intermediary’s stakeholding

power over service providers. The study uses sets of logs on service availability, collected over a

minimum of 6 months per provider. It produces a correlation of 100 Web services for SeekDa

(Figure 4a) and 70 Web services for StrikeIron (Figure 4b) to their availability over a period

longer 6 months. The data logs originate from raw data of Seekda’s daily-performed availability

test (www.seekda.com). Figure 4a represents a set union of Web service logs, originating from all

different intermediary types. The set union of Figure 4a brings to light that 23 out of the 100 ana-

lyzed Web services performed below 90% availability. A total of 22 Web services showed

availability between 90% and 97.99%. While 25 Web services were available between 99% and

99.99% of the time, only 14 of 100 Web services achieved 100% availability. The analyzed sam-

ple of 100 Web services accomplished an average availability of 91.22%. The logs of the integra-

tor-hosted services showed a much better performance than the non-hosting service intermediar-

ies. Therefore, the survey looked in a second analysis at the specific intermediary type integrator,

analyzing a new sample set of 70 integrator-hosted services (Figure 3b) with the example of

StrikeIron. The services from the integrator showed an average availability of 99.37%16. The re-

mainder of this subsection investigates on the reasons for the differences in performance.

Table 3 relates stakeholding power over service quality with the each intermediary type.

Further elaborating on an initial categorization by Scholten, Fischer et al. [48] the present work

categorizes into query, monitor, specify and prescribe to circumscribe the level of stakeholding

power. The higher levels of stakeholding power include the lower levels. Query describes the

weakest level of authority. Quality information is not available through the system, but needs to

be collected from publicly available sources, through inquiries or through automated tests (ping-

ing of services). Monitor is a level, achievable for those intermediaries, which route service con-

sumption traffic through their domain and which can collect data like business quality data

through suitable systems e.g., reputation systems (Figure 3c). Monitoring does not include en-

forcing power over a quality parameter. Intermediaries, which control the traffic, the service or

the deployment environment can actually prescribe non-functional quality parameters. Prescrip-

tion in that context means they can define and adapt those quality parameters which depend on

platform resources (memory, storage, compute), on distributed architecture (e.g., time until even-

tual consistency is reached) and on specific aspects of service design e.g., through code optimiza-

tion of binary executables in cases when the service is deployed on different hardware and

16 Services on platforms can be identified due to the service’s address. As e-Hubs and e-Markets do not allow for a clear corre-

lation of services and platform they are not part of this quantitative comparison. Exemplary verification of their service’s
availability showed a quality level around the average of the infomediary.

Dynamic Network Notation Ulrich Scholten

 27

requires different native machine instructions. Whereas infomediaries and e-hubs are limited on

querying, e-markets and integrators can exert active service portfolio management. E-markets

and integrators can specify service design. As they can observe and theoretically sanction non-

fulfillment, this specification can have binding or non-binding annotation. The integrator howev-

er can go one step further. It can prescribe all non-functional quality parameters, e.g., through

service design which mandatorily takes place in a programming environment and which only

gives selective design options.

Table 3: Mapping table of quality factors and intermediaries; q: query, m: monitor, s: specify,

p: prescribe

The study now maps the above described levels of stakeholding power per intermediary type

with the actual measured performance. It used information on service management, given in the

respective company websites (terms and conditions, programmers’ guidelines). Table 4 summa-

rizes the results. Being powerful in terms of stakeholding power towards Web service providers,

the integrator clearly has the potential to outperform the e-market eSigma in terms of quality

monitoring and the possibility to prescribe. With the services deployed in the integrator’s domain,

the integrator has better potential to monitor and adapt the quality parameters; especially those

depending on the infrastructure.

The analyzed e-market operates with a defined quality management process for the release of

Web services. It is based on a specification of expected service features to insure appropriate

quality of service. The e-market’s terms and conditions state that the deployment of services is

A Foundations

 28

restricted to compliance with these specifications. However, the e-market does not feature

successive quality management procedures for released services. Availability of services federat-

ed by this market is only marginally differentiable from the average market performance.

Because they route all traffic through the control area (Figure 3, constellation c), e-markets dis-

pose of basic portfolio management options. They could for instance improve their service port-

folio through eliminating low-performers from their portfolio of federated services. Further, they

have the power to apply motivational influence onto their ecosystem.

Table 4: Comparative analysis on exerted Stakeholding Power to ensure Web service quality

E-hubs and infomediaries have the lowest levels of stakeholding power. Perspectives for

service intermediaries depend on their ability to respond to the potential to meet and consequent-

ly to have influence on the provided quality of service. In conclusion, they depend on the level of

stakeholding power and hence their type of intermediation.

Due to the low performance of infomediaries and e-hubs due to their limited stakeholding

power, the present work focuses in the remainder on those supply concepts, which have stake-

holding power over service and / or traffic (e-markets and integrators). No commonly accepted

terminology has yet emerged for those platforms offering Software-as-a-Service in the concept of

e-markets and integrators which offer own and / or federate third party SaaS. This thesis applies

the terms service platforms.

Remote StrikeIron

Methods Market

Place

Business

model
Infomediary e-Hub e-Hub e-Hub e-Market Integrator

Residence off-site off-site off-site off-site off-site on-site

Service Cost yes no no yes yes yes

Service

Sustainability
no no no no no no

Service

Recognition
yes no no no no no

Reputation

(score)
yes yes no yes no no

Reputation

(Descriptive)
yes no no yes no no

Response

Time
yes no no no yes yes

Availability
daily avail-

ability check
no no no

hourly

avail-

ability

check

minute-by-

minute

availability

check

General

information

through trial

no yes yes yes yes yes

B
u

s
in

e
s

s
 V

a
lu

e
 Q

u
a

li
ty

S
e

rv
ic

e
 L

e
v

e
l

M
e

a
s

u
re

m
e

n
t

Q
u

a
li
ty

Quality

Factor

SeekDa! WebService

List

Xmethods eSigma

Dynamic Network Notation Ulrich Scholten

 29

Definition 20: A service platform offers own or third party software as metered on demand ser-

vices. Software can be partially or completely deployed outside the service platform. The traffic,

when a service is consumed passes through the service platform.

2.5 Autonomy and Self-Organization

Self-organization as introduced in Definition 9 describes self-paced alignment of the platform

participants, which is not centrally enforced [61]. Ecosystem participants autonomously self-

organize towards a more beneficial structure, motivated by their individual pursuits of benefit-

maximization. Similarly to the supply-side of a platform, the consumer-side may self-organize.

Prerequisite to self-organization are feedback structures for suppliers and consumers (Definition

9). Several service platforms analyzed in the explorative analysis included structures that enable

self-organization around the platform.

One approach on the supply side is to open up service platforms to services provided by

autonomous third parties and thus to benefit from external value creation. Several among the

analyzed platform operators chose that approach, e.g., Facebook, Netsuite or Salesforce. Many of

the analyzed third party services were of composite nature. As an example, Figure 5 depicts a

fraction of a service network from the Salesforce platform Force.com. The figure shows two tiers

of an ecosystem for payment processing and storage. It depicts the fraction of tier 2 services that

are published on the Salesforce platform. The complete network goes beyond the 2nd layer of

service providers. PayPal for instance, a second tier service provider in Figure 5, is inter-

connected on subsequent tiers e.g., VISA, MasterCard or American Express [79]. Services de-

picted without links into a second tier – like O2B –did not provide network information.

Centralized handling and management of networked service portfolios like that of Salesforce

would be difficult, in view of complexity through loosely coupled service networks, the multitude

of service providers, transaction types and short life cycles. The self-organized approach reduces

this complexity by giving the ecosystem participants the autonomy to act independently with the

potential to cause better adaptability of the service portfolio and a better sensitivity to change (see

Section 2.2.2). The endorsement of external services in a self-organized way can hence lead to

the creation of networks around service platforms, which could eventually cause network effects.

But opening to self-organization implies renouncing degrees of control.

A Foundations

 30

Figure 5: A Network of services around Salesforce

The network of services, described in Figure 5 would look different when considered from the

viewpoint of e.g., Paypal. In consequence, a modeling language will need to model a platform

from a specific view point, defined prior to starting the modeling process. The present work re-

fers to the entity, whose view point is reflected in a model, as protagonist. It could be any kind of

company or consortium, operating a service intermediary.

Definition 21: A protagonist is the entity, whose view point is reflected in a model.

The analysis brought to light structures for self-organization on the demand-side e.g., imple-

mented by Dropbox, Salesforce or Trello. These platforms either motivate consumers to contrib-

ute (e.g., in Salesforce’s AppExchange Platform), or enable consumers to invite additional (non-

subscribed) users to mutual collaborative activities on the platform.

Pure self-organization without the platform’s ability to manage service quality would be dis-

advantageous as seen in Section 2.4. All of the above stated platform operators with self-

organizing structures therefore also implement service management mechanisms. The following

section looks more closely at this mixed approach.

SalesForce

Payment Connect

Orders to Payments

O2B

eWAY managed Payment

Integrated Credit Card

Processor

Credit Card Processing for

Salesforce.com

Trio

Skipjack Payment

Chargent Recurring

Payments

Payonomy Card Payments

Paypal

Authorize.net

Google checkout

Orbital

Barclay's ePDQ

RBS WorldPay

Yahoo Maps

ClickAndPledge.com

Dynamic Network Notation Ulrich Scholten

 31

2.6 Managed Self-Organization

The two previous subsections substantiated that self-organization of service providers is a way to

pursue fast growth in service provision and to ensure the reactiveness of large service portfolios

on evolving consumer requirements. However, they also showed that stakeholding power is re-

quired to maintain a defined, appropriate level of quality of service. In result, the graphical mod-

eling language, building the main artifact of this work, needs to include both. This Section builds

a conclusion from Sections 2.4 and 2.5 and consolidates the findings into one integrated concept.

The present work denominates this integrated concept of self-organization and control managed

self-organization. Such a concept is a trade-off. The limitation of self-organization implies an

increase in control and vice versa. The weighting of both parameters is subject to the decision of

the modeler in the design process.

Definition 22: Managed self-organization describes the trade-off between the level of control

exerted over service quality and the degree of self-organization.

Service management of high volumes of services and consumers, even though with a strong

degree of self-organization is beyond manual manageability. The explorative and longitudinal

studies showed that these service management activities need to impact on several stages of

service management, i.e. during design time, during deployment time and during operations time.

Such a system requires suitable automated or partially automated control mechanisms to be oper-

able at all. In a graphical modeling language, these control mechanisms need to be conceived in a

way that they can be allocated at the correct procedural point (e.g., before deployment) and in the

right structural position (e.g., within the deployment environment).

The remainder of this subsection looks first at managed self-organization concepts through en-

forcement (Subsection 2.6.1) and then continues with incentivizing concepts (Subsection 2.6.2).

A Foundations

 32

2.6.1 Managed Self-Organization through Enforcement

This subsection looks at the management of third party services or service providers through en-

forcement in the context of the service management life-cycle. It then complements this with

additional aspects on managed self-organization of consumers through enforcement. Janiesch,

Niemann et al. [80] structure the service management cycle in the Internet of services into 5 cy-

clically repeated steps: service design (embracing conceptual design and development), service

deployment, the concurrent steps service delivery and service monitoring as well as service

change. The present work groups the concurrent service delivery and monitoring steps into one

phase of service operations. To the platform, the phase of service change driven by the service

provider is like deployment of a new service together with the potential undeployments of the

obsolete version. The present work therefore integrates deployment and change into one phase of

deployment and updates. If the platform operator needs to update third party services (e.g., adapt

services on new deployment environment), it does it during the operation phase, without interac-

tion with the service provider (Figure 6).

The service platforms, analyzed in the explorative study and during the experiments on the

three operative platforms, exert service management during all phases of service life cycle

(Figure 6).

Figure 6: Service management actions during the service life cycle

Design phase:

The conducted studies revealed several approaches of exerting influence on service development

already in the design phase. One elicitated approach of steering of service development in the

design phase is through communicating a programming specification as service design specifica-

tion. The platforms following this approach attain authority of enforcement over service design,

when they prescribe external developers to develop their service design within a development

environment on the platform. The development environment can impose a diversity of features

on services including structure, the utilization of predefined building blocks or a specific pro-

gramming language, as exemplified in Table 5. Limiting the scope of freedom for the external

developers allows the platform operator to attain external services of defined minimum quality

Dynamic Network Notation Ulrich Scholten

 33

(Table 3), fully responding to his design requirement. One important objective of this approach is

service manageability (controllability, observability, management-information offerability).

As an example, platforms operators like Salesforce.com or Netsuite prescribed service devel-

opment within their proprietary programming environment, allowing the platform operators to

enforce defined service architecture, interface design and interoperability (Table 5). Program-

ming environments make specifications binding and enforceable (prescription). As design takes

place within the platform’s control area, the platform operator can continuously monitor the pro-

cess and interfere if required.

Table 5: Development environments of Salesforce.com and Netsuite

Uniform interface design ensures compliance to the platform operators’ standards and produc-

es the same look-and-feel for all services in the platform portfolio. Through the prescription of a

Web services API, the platform achieves suitable business process quality for internal and exter-

nal service coupling.

The graphical modeling language, which is the central artifact in this thesis, needs to be able

to express the design stage. All involved players as well as their transaction and activities need

visualization. Representation needs to be able to differentiate between an offsite approach of a

programming specification and an onsite approach of a programming environment, including a

prescriptive dimension of service management. Information and motivation as a means to exert

influence in the context of service management requires visualization.

Deployment phase:

The studies revealed that service management continues during the deployment phase. Deploy-

ment in the analyzed platforms is conditional. Filtering mechanisms restrict the deployment of

external services for the accomplishment of the previously described service qualities (Figure 6).

The Facebook platform had a fully automatic release process, requiring 10 Facebook friends to

test the service as prerequisite for releasing it. At the time of Scholten’s experiment on

A Foundations

 34

Force.com, the operator Salesforce estimated the release process as approximately 2 months. This

leads to the estimation that the company’s release process has also a manual stage.

Similarly to the service management features within the design phase, the graphical modeling

language needs to express the restrictive filtering prior to deploying a service. Also the deploy-

ment itself requires visualization.

Operating phase:

During operating time, the analyzed platform operators were in a position to continuously moni-

tor service quality, allowing them to adapt, in the worst case undeploy specific services (as done

in example by Salesforce or Netsuite). The attained Service Level Measurement Quality enables

them to monitor features, which may depend on platform or on the service. Availability or maxi-

mum throughputs are typical platform-related features. Depending on consumption of a specific

service, the platform needs to be able to replicate it, or to increase respective platform resources.

The specified service manageability quality allows services to be adapted, e.g., code optimization

on specific hardware or modification of a specific API based on changed platform infrastructure.

Platform areas which are subject to network effects may exhibit strong growth with respect to the

activities of service deployment or consumption. Those areas consequently need to offer suitable

scalability of the deployment and consumption environment.

The graphical modeling language needs to be able to express the platform operator’s scope for

service management related to this stage, i.e. the prescriptive mechanisms that enable enforcing

adaptation of the platform service parameters, if required. It also needs to be able to articulate the

sanctional power of the platform operator, being able to undeploy services if underperforming or

in violation with given specifications. The areas that exhibit network effects require explicit visu-

alization in the language, as they might require a scalable environment. Also, the consumer

groups which are part of the network effects require representation.

In managed self-organizing platforms, platform operators are limited to controlling tier-one

services. In a scenario of composite services (Figure 3d), tier-(n+1) services are situated outside

the control area and beyond the operator’s prescriptive authority. Several of the analyzed service

providers took advantage of this limited influence and focused on the development of universal

tier-2 service. On the service platforms they provided a simple requestor service, compliant with

the platform specific programming specification or environment, which communicated with the

more complex tier-2 service. The simplest solutions found were designed with an inline-frame

which requests on the universal tier-2 service (e.g., by the provider of file-share services Box

Inc.17). Thus even the tier-2 UI was reusable.

17 https://www.box.com/, retrieved 15.02.2013

Dynamic Network Notation Ulrich Scholten

 35

The graphical modeling language needs to be able to express external service provisioning and a

suitable mechanism to control their quality.

Consumer side:

The cycle of service consumption is less extensive than the cycle of service supply. Consumers

are enabled to subscribe self-paced and autonomously. They have to follow a subscription pro-

cess, where the consumer has to accept the terms and conditions prescribed by the platform oper-

ator. The platform operator limits access to the platform to those consumers who accept the terms

and conditions and who supply the requested deliverables, e.g., name and address or credit card

details for payment processing. On the platform, the consumer has access to certain environ-

ments, dedicated to consumption of the services, agreed upon in the terms and conditions. If a

service consumer does not act in compliance to the agreed terms and conditions (e.g., payments

are not released), the platform operator can initiate an escalation routine, with possible steps

ranging from an accepted period for amendment to immediate exclusion from the platform. All

analyzed platforms followed these steps with varying nuances. The graphical modeling language

needs to be able to model these restrictive and sanctional mechanisms.

2.6.2 Managed Self-Organization through Incentives

Apart from management through enforcement, the surveys revealed several approaches of man-

aging self-organization through incentives. One approach is the support of self-organization

through consumer-based collaborative feedback mechanisms. The second is the provisioning of

information to support self-organization among service providers or service consumers. The last

encountered approach is the motivation of service providers or service consumers through re-

wards. Frey and Oberholzer-Gee [81] differentiate between intrinsic and extrinsic incentives.

Provisioning consumer-based collaborative feedback or processed information incentivizes in-

trinsically. Motivation through rewards impacts extrinsically. Extrinsic motivation is triggered

through monetary or non-monetary rewards. The collaborative feedback mechanisms discovered

through the survey were only applied for service consumers. The two other mechanisms found

application for service suppliers and service consumers.

The encountered collaborative feedback mechanisms can be divided into collaborative sanc-

tioning systems (reputation systems) and collaborative filtering systems (recommender systems).

Collaborative sanctioning penalizes services of poor quality and highlights perceived quality of

service [82, 83]. The feedback is incentivizing to users as it creates a trust-basis for a service de-

cision. Examples for elements of reputation systems in service platforms are service rating as

A Foundations

 36

done on Force.com, or social plug-ins such as like buttons, comment boxes or recommendation

boxes on the Facebook platform18. Recommender systems are more focused on specific commu-

nities and are based on the assumption that tastes and preferences are specific per community

[82]. Examples for recommending mechanisms are e.g., send buttons, follow buttons, activity

feeds or facepiles [84]. Recommender systems leverage on the inherent trust relationship of

social networks [85]. A graphical modeling language needs to be able to model such collabora-

tive feedback mechanisms.

Platform operators also provisioned preprocessed information to their service providers or

consumers. The platform operator can generate this information explicitly at the request of con-

sumer feedback, or implicitly.

Implicit feedback is based on observing the consumer’s reaction in the service delivery pro-

cess. The platform operator can gain feedback in the process of offering, searching, and deliver-

ing a service, as well as after delivering a service. He can aggregate behavioral reactions to im-

plicit feedback on consumer dissatisfaction [86] e.g., consumers migrating to other services or

consumer complaints. Claypool, Le et al. [87] validate implicit interest indicators experimentally.

They detect e.g., reading time and scrolling behavior as predictors for overall explicit ratings of

Web page content. Fox, Karnawat et al. [88] reveal that certain implicit feedback information, i.e.

click-through time and exit type of a Web search session. The platform operator Netsuite pro-

vides consumption information to key service providers. Several platforms express suggestions to

service consumers based on consumption behavior by consumers with similar consumption be-

havior. In pursuit of engineering a graphical modeling language able to express the management

of services and its providers and consumers this provisioning of preprocessed information must

also be depicted when needed.

The last encountered incentivizing approach is the motivation of consumers of service

providers towards a specific action. Frey and Oberholzer-Gee [81] differentiate between extrinsic

and intrinsic motivation. Whereas information motivates intrinsically, motivational control works

extrinsically. Extrinsic motivation is triggered through monetary or non-monetary rewards. Sev-

eral among the analyzed platforms apply motivational control through monetary incentives. Plat-

form operator use seed funding to support service development in line with the platform opera-

tors’ goals, e.g., Facebook’s fb fund19. Other platform operators create financial incentives

through initial cost-free or cost-reduced subscription periods. On the supplier side, the platform

operator can exert extrinsic motivational control e.g., through the provision of free-of-charge

SDKs and thus reduce entrance barriers to potential developers. Further, extrinsic motivation can

be accomplished though subsidized access to the service ecosystem, open license models for

18 http://developers.facebook.com/docs/plugins/, retrieved 08.02.2013
19 https://www.facebook.com/fbFund

Dynamic Network Notation Ulrich Scholten

 37

specific code to facilitate service contribution. The backup service platform Dropbox [89] gives

free storage space for additionally acquired customers. In a general analysis of software industry,

Shapiro and Varian [56] suggest free versions of digital goods as suitable way to attain critical

mass with respect to network effects. The disadvantage of extrinsic motivation in contrast to in-

trinsic incentives is that it is not cost-neutral. The modeling language also needs to represent this

motivational approach to managed self-organization.

2.7 Base Value and Critical Mass

The conducted explorative study shows that successful platforms benefit from a suitably high

quantity of managed services supplied by self-organized service and from high quantities of sub-

scribed users. The unsuccessful ones as analyzed in the longitudinal analysis did not accomplish

self-enforcing network effects. The present work refers to the value propositions that are ex-

pected to incite network effects as base value. Base values need to exceed a minimal threshold

called critical mass. The concept of a critical mass receives theoretical substantiation in

Section 3.2.

Definition 23: The base value of a service platform is the value proposition, offered by a

platform operator to ecosystem participants to incite network effects.

Definition 24: The critical mass describes the threshold required for a base value to incite a net-

work effect.

The base value could be a static contribution from the platform operator, e.g.,

Salesforce.com’s CRM software. In this case, the value would be a close to static stock due to the

limited team of contributors. Close to static means that the content grows organically. That is

through the own development of the internal team in charge. Other base values depend on activi-

ties from ecosystem partners, i.e. Salesforce.com’s service providers, which are motivated to

contribute to the Force.com platform due to the large number of consumers that actively sub-

scribed to the platform. If successfully implemented, these base values grow through the

activated network effect.

Attractiveness to attain a sufficient amount of consumers depends on the platform’s potential

to offer a sufficient number of services of appropriate quality20. This capability is limited to

20 The interdependence of attractiveness, quantity of services deployed and quantity of customers subscribed is formulated

and explained as quantitative differential equation in the subsequent foundations-chapter (Section 3.2).

A Foundations

 38

e-markets and integrators. None of the intermediaries analyzed in the longitudinal study

succeeded. All of them were discontinued (or fundamentally changed in concept) due to the lack

of critical mass of consumers.

The most successful SaaS-platforms such as Salesforce.com, Intuit, Appirio, Long Jump, In-

tegrify or Netsuite [4] have integrator structures. Most of them started acquiring consumers with

a developed critical mass of proprietary services. Only in a second step, a subset of them opened

up to third party services and / or created social networks among their existing consumer base.

They used the subscribed consumer base as critical mass to incite network effects.

Although the successful examples described above are all integrators. However, the e-market

approach will also remain in the scope of the planned modeling language. First, this is because

some analyzed platform operators followed a mixed approach including e-market designs (e.g.,

SAP’s App Store). Second, this is in view of W3C’s linked data vision to improve manageability

of distributed application integration [90-92]. Thirdly, because of ongoing research in the fields

of Social Cloud building on virtualized resources contributed by users which are made available

to friends in the context of a social network [85, 93]. Aware of the shortcomings in manageability

of external resources the researchers suggest (a) compensating by using prescribed and parsed

service designs and sandboxing, (b) lessening the risk of malicious action by encryption of data

exposed to misuse and (c) reducing the risk of loss or corruption of files through redundancy,

achieved by the utilization of several providers for the same service provisioning in parallel

One additional particularity, revealed in the surveys is that the duality between service

providers and service consumers becomes indistinct. Both can provide value or be attracted by

value. Both may also provide services. As an example, the platform operator Salesforce offers a

market place, where service consumers can offer their add-on services to other consumers. Exper-

imental platforms like SOAlive support the development, deployment and management of

services for those social and business communities, desiring to exchange services [94, 95]. Social

Cloud projects like the research e-markets BOINC21 assemble for research projects like

Milkey@Home more than 300.000 computers from approximately 150.000 participating users as

virtual resources22. The graphical modeling language needs to be able to handle the increasingly

dual roles of the ecosystem participants.

In conclusion, the graphical modeling language needs to be able to correctly abstract

e-markets and integrators. It also needs to express the base value that is intended to incite a net-

work effect. Ideally, the model should allow for differentiation between a static or growing base

value. The model should also be able to handle duality or changing roles of value provider and

consumer.

21 Berkley Open Infrastructure For Network Computing (BOINC), website: boinc.berkley.edu
22 Source: http://boincstats.com/en/stats/61/project/detail, retrieved 23.03.2013.

Dynamic Network Notation Ulrich Scholten

 39

2.8 Research Requirements

The previous sub-chapters derive three fundamental factors that need to be addressed in the

graphical modeling language: Structural elements, process elements and the allocation of service

management mechanisms.

Requirements related to structural elements (RQ1)

Section 2.3 revealed that areas of staged stakeholding power (Figure 3) play an important role to

the platform operator. These areas determine where and to what extend the platform operator can

intervene in value creating processes and where he can interfere directly with technology. The

language needs to be able to represent these areas as elements, structuring platforms and their

environment. Its grammar needs to be able to express the resulting implications to service man-

agement. Further the language needs to capture areas on the platform, which can be subject to

network effects, as those areas need to be scalable. It also requires depicting finite quantities of

areas of similar full stakeholding power (Section 2.6).

Requirements related to process elements (RQ2)

The present problem identification exposes process elements of relevance, which the language

needs to formalize. Section 2.5 showed that the sources and targets of any relationship can be

external players, internal entities, or interactivity between diverse participants. The thesis gives

the example of service providers or consumers as external players. Examples for elements within

platforms are the departments which contribute value e.g., the Salesforce’s Relationship Man-

agement product, discussed in Section 2.6. The language requires an element to represent partici-

pants, which is robust to potential role changes over time between those of value consumer or

provider. The language further needs to depict base value contribution, as done e.g., by

Salesforce.com’s CRM software in the start phase of the platform (Section 2.7). The language

needs to find a concept on how to handle players outside the platform’s influence, e.g., competi-

tors in Figure 3. Further, the present work repetitively emphasizes that network effects are origi-

nating from more implicit relationships, where cooperating participants are not distinct but are

rather part of an unspecific group of players. Those groups require representation. Another

element type, which finds repeated discussion in chapter 2 and which requires representation are

the activities, e.g., service deployment, subscription, social networking or the exchange of appli-

cations as in the example of Salesforce’s AppExchange.

The consideration on managed self-organization in Section 2.6 highlights the requirement to

model transactions from ecosystem players and the exertion of influence on these transactions by

the platform operator or any other player. The platform needs to be able to model the interplay of

A Foundations

 40

these relationships. This includes the modeling of centrally controlled process elements as well as

self-organized processes in the ecosystem, leading to network effects.

Given that self-organization is driven by groups of ecosystem players, the language needs to

be able to express this in representation and grammar

Requirements related to service management (RQ3)

Chapter 2 revealed a set of mechanisms for service management, used in the context of managed

self-organization. In particular, Section 2.6 identifies enforcing mechanisms like prescription,

restriction and sanctioning, as well as incentivizing mechanisms for self-organization in the eco-

system and on the platform, through consumer-driven feedback, information and motivation. The

language needs to depict these mechanisms. Its grammar needs to be aware, which mechanism

can be applied in which context.

The research requirements lead to the formulation of the research hypotheses in Section 2.9.

Table 6 summarizes the research requirements.

Table 6: Overview of research requirements

Dynamic Network Notation Ulrich Scholten

 41

2.9 Research Hypotheses

The overall question, defining this work is:

How can a modeling language support the design of service platforms, targeted at harnessing

network effects?

In response to this question, the present work formulates the following main hypothesis and

three related subhypotheses.

Main Hypothesis MH: A modeling language targeted at representing network effects around

service platforms supports platform design through guided modeling, in particular by providing

structural elements, process elements and control mechanisms.

The main hypothesis addresses all aspects of platform design and service management claimed in

the research requirements. The language and its underlying grammar are able to provide a seam-

less answer on the different research requirements, enabling modelers to produce well-formed

platform models of sufficient level of detail. These models allow for subsequent analysis.

The subsequent three sub-hypotheses break down the main hypothesis, shedding light on the

major directions, set through the research requirements RQ1 – RQ3.

Sub-hypothesis H1: A language providing the structural perspective of areas of staged authority

and structural divisions enables better structuring and improved exploitation of stakeholding

power.

The present work provides concepts on where to position ecosystem participants and interaction

with the platform operator, in view of the platform operator’s desired stakeholding power. Build-

ing on that, the thesis defines structural modeling elements for the control area, the influence area

and the noise area. It also provides subdividing elements for the control area in order to enhance

clarity and to express scalability of technical environments and areas of similar structure. It em-

beds the resulting structuring elements in a seamless grammar.

Sub-hypothesis H2: A language providing the procedural perspective of interrelated specific

and unspecific participants as well as of their interaction in and with the platform allows for

modeling improved causal loops and related processes.

This hypothesis requires general consideration of network effects in the context of service plat-

forms. Considering network effects also necessitates an understanding of the originators of value

contributions in and around service platform in the context of the processes that drive these net-

work effects. Related research outcomes embrace a conceptualization of these processes as well

as their grammatical representation.

A Foundations

 42

Sub-hypothesis H3: A language that adds control mechanisms onto its elements, allocating

managed self-organization, can model options to turn causal loops into network effects.

The present work provides concepts on how to exploit or strengthen latent network effects and on

how to create new ones. For this purpose, the thesis introduces control mechanisms and explains

when and in which context to place them onto the procedural elements. The thesis further inte-

grates these control mechanisms into the language’s overall grammar.

The present work validates the hypothesis as follows: It begins with a conceptualization of

structures, processes and control mechanisms as claimed in the subhypotheses H1-H3. The sug-

gested terminology and abstractions are able to represent multiple relationships in and around

platforms, leading to network effects as well as options to manipulate them. Building on these

abstractions, the thesis develops the Dynamic Network Notation, a graphical modeling language,

which seamlessly integrates the above described conceptualizations according to subhypotheses

H1-H3 into one grammar and related semantics. Both represent platforms, platform ecosystems

and their competitive environment as well as immanent network effects, while allocating

categories of control mechanisms to manipulate them. The thesis endows the Dynamic Network

Notation with building blocks of structured experience, formalized as pattern language and

embedded in a framework to develop and evolve a pattern repository. The thesis instantiates the

grammar within and editor, complemented with an analysis environment, subsequently guiding

the modeler towards more efficient solutions. The validation closes with a sequence of field

studies confirming well-formedness and expressiveness of the Dynamic Network Notation and its

editor as well as its ability to guide to quality models.

Dynamic Network Notation Ulrich Scholten

 43

3 Related Theory

The present work’s major deliverable is a graphical modeling language for service management

around platforms and their ecosystems in the context of network effects. This chapter creates

foundations on language engineering and network dynamics in the context of service platforms.

Section 3.1 introduces language engineering. It first builds the necessary foundation on

language and grammar (3.1.1 and 3.1.2), then introduces the groundwork for the following

graphical language engineering (3.1.3). The latter subsection suggests a model stack for graphical

language engineering, motivated by model-driven development. This stack allows creating and

maintaining clarity throughout the present work, as it provides a clear demarcation and allocation

of the various abstraction levels needed in this thesis. The second part of this chapter gives a

detailed introduction into network effects around service platforms. The theory presented origi-

nates from the disciplines of system theory and dynamic markets (Section 3.2). The chapter

closes with an introduction into control theory (Section 3.3).

3.1 Language Engineering

The major artifact produced within this thesis is a graphical modeling language. The following

subsection lays the foundations with language and grammar. These are the basic pillars of lan-

guage engineering. It proceeds with an introduction into more specific graphical language engi-

neering. Both Sections are used as groundwork for the deduction and description of the engineer-

ing concepts of the dynamic network notation, as they provide necessary theory and terminology.

Information technology has been a focal sphere of activity for language engineering. This is

even intensifying since the emergence of the Internet. There is on the one hand a broad basis of

generic languages such as. XML or Java, which allow for nonspecific applications, detached

from any subject matter or area. On the other hand there is an increasing requirement for domain

specific languages (DSL) such as the Web Service Description Language (WSDL), designed for

an efficient description of web services. The term domain stands for specific technical or applica-

tion purpose. Business Process Model and Notation (BPMN) and the Business Process Execution

Language (BPEL) are languages, engineered to effectively design and execute business process-

es. The Markup language used for interchange of data between advertising systems (AdsML) is

specifically addressing the data exchange needs of newspapers or advertising agencies. Subject of

this thesis is a domain-specific language for service management.

The art of language engineering lies in the choice of the right abstraction level that suitably

simplifies reality to create the right expressiveness all while preserving the necessary minimum

attention to detail. Its theory is subject of the following two subchapters. A subsection on lan-

A Foundations

 44

guage and grammar opens the introduction into language engineering (3.1.1), followed by an

explanation of the concept of generative grammars (3.1.2). The subsequent subsection 3.1.3 im-

merges into the area of graphical language engineering

Much of the theory in software language engineering originates from the academic discipline

of natural language research (linguistic) further adapted to the purposes of software language

engineering. This section uses theory from both disciplines. It builds on key concepts and accura-

cy of classical language engineering theory (e.g., context-free grammars) and benefits from re-

cent research in the fields of software language engineering. General terminology of language

engineering sometimes causes inadequacies, when applied to the context of Information Tech-

nology. Linguistic speaks of sentences as elements of a language. The term sentence however

describes well a sequence of words in a natural language but appears inappropriate when talking

about mathematical languages or software languages. In mathematical contexts, the term

statement might be suitable. In IT language engineering model, program or artifact might be

suitable – always depending on the context.

Kleppe [96] suggests the all-embracing coinage linguistic utterance or alternatively the fusion

word mogram (being made-up of model and program). For the sake of clarity and general ap-

plicability, this thesis uses the word utterance in definitions originating from linguistics. In the

context of specific graphical language engineering, the present work utilizes the word model. For

an utterance of the dynamic network notation it uses the term Dyno model.

3.1.1 Language and Grammar

The basics in language engineering go back to the US-American Scientist Noam Chomsky. In the

1950s, he laid down the foundations for language engineering including software langauge

engineering in his search for a simple grammar that enabled the generation of all sentences of the

English language. The following definitions are based on Chomsky [97] and complemented by

the attribute of well-formedness as measure of grammatical correctness [98]:

Definition 25: A language L is constituted of a (finite or infinite) set of utterances of finite length,

constructed from a finite alphabet of symbols through a grammar.

Definition 26: A grammar G is constituted through a finite set of production rules, describing

how the elements of the languages alphabet are concatenated. An utterance that conforms to such

production rules is called well-formed.

Dynamic Network Notation Ulrich Scholten

 45

These production rules are the core of language engineering. They define how utterances

(referred to as variables or non-terminals) are produced as a string of terminals from the

language’s alphabet [96, 97]. Kleppe’s [96] example of a simple grammar helps to visualize the

concept of production rules. The grammar specifies a part of the English language. Note it is just

a fraction of the grammar which specifies the English language. It defines the structure of sen-

tences S, noun phrases NP and verb phrases VP. The angular brackets […] state optional ele-

ments, the arrow → can be read as is produced by.

The grammar can be formulated as:

S → NP VP (3.1)

NP → [article] [adjective] noun (3.2)

VP → [verb] verb (3.3)

The utterance “The wonderful Dynamic Network Notation is convincing” for example has the

structure article adjective noun verb verb in compliance to rules (3.1), (3.2) and (3.3); it is

grammatically correct. The term Dynamic Network Notation only complies, as it is one proper

pre-defined noun. The opposite case is worth a consideration as it shows the limits of this simple

grammar: considering Dynamic Network Notation as independent words would turn it into one

adjective and two nouns, leading to the following incompliant phrase structure:

article adjective adjective noun noun verb verb.

In IT-literature, the word grammar is often used synonymously with syntax. These words

however are not synonyms. To cater for a precise application of terminology, this Section pro-

vides disambiguation. Redefining grammar as a function of syntax leads to:

Definition 27: Grammar is a set of rules for languages, consisting of three segments: morpholo-

gy, syntax and phonology. Morphology prescribes the representation of linguistic units in a lan-

guage (e.g., of words). Syntax defines the assembly rules of utterances through linguistic units.

Further, Syntax determines adaptation of specific representation of linguistic units. Phonology

defines the organization of sounds within utterances.

The following utterance serves to illustrate the disambiguation:

Dyno produces graphical models.

The utterance is produced with the English grammar. The morphology provides the words Dyno,

produce, graphical and model. The syntax takes care of the production of utterance and case spe-

cific adaptation of the words produce and model. Phonology, the organization of sounds, plays a

subordinate role in IT language engineering although it allows for correct pronunciation of lan-

guage during oral discussions. In this thesis, phonology will be added wherever required. In the

above case, it would explain how to pronounce the phase properly. In the standardized phonetic

A Foundations

 46

language, the word Dyno would be depicted as daɪ.nə. Phonology also includes the description of

the language rhythm and accentuation.

The above linguistic rules are able to create correct utterances. However to assign a meaning

to those utterances, semantics is required. The present work expresses semantics in natural lan-

guage and in a non-formalized way.

Definition 28: Semantics assigns a meaning to elements of an utterance (symbols, words) and to

the utterance the as a whole.

The formalisms to describe how production rules formulate a language are called meta-

language.

Definition 29: The term meta-language defines languages conceived to describe other natural or

artificial languages with the help of specific terminology and symbols.

The following subsection applies a simple meta-language that was used by Chomsky [97]. In

the course of the thesis, more meta-languages i.e. the Extented Backus Naur Form (EBNF) or the

Unified Modeling Language (UML) find exemplification.

3.1.2 Generative Grammars

Chomsky’s research in the 1950s [97, 99] deserves consideration as it provided important

foundations for language engineering. His process of research further illustrates the mightiness of

transformational grammar as compared to other concepts of grammar. The concept of

transformational grammar will be introduced / derived hereafter. Chomsky investigated on 3 con-

ceptions for grammars for language engineering: (a) Finite State Markov Process (b) Phrase

Structure and (c) Generative Grammar.

(a) Finite State Markov Process:

The Finite State Grammar G is a system of

- a finite number of states So, …, Sq, (3.4)

- a set of transition symbols { |

 (3.5)

- a set of pairs of states C, said to be connected = {(Si, Sj)} (3.6)

Moving from state Si to state Sj, the system produces the symbol .

Dynamic Network Notation Ulrich Scholten

 47

The initial sequence of states is

 . (3.7)

When moving from state
to

 the grammar G produces concatenations of from appro-

priate choices of
, which represent correct utterances of the form:

 . (3.8)

The totality of utterances, produced by this rule-set is called language LG generated by G.

The language is very limited and failed due to this in experiments to produce natural languages

i.e. English (Chomsky 1956). Better results were generated with a phrase structure.

(b) Phrase Structure Grammar:

Still being a finite state process, phrase structure grammars are able to produce realistic results,

when limited to a small subset of simple languages. A Phrase Structure Grammar, also called

(∑ F -grammar, consists of

- a finite vocabulary Vp, (3.9)

- a finite set of initial strings in Vp depicted as ∑, (3.10)

- a finite set of rules that rewrite x through y, depicted as F={ x→y│(x,y) Vp }. (3.11)

The resulting language L is a set of strings derived from the (∑, F)-grammar. It is consequent-

ly called a derivable language. However, the (∑, F)-grammar was still producing inadequate der-

ivations and required additional refinement.

(c) Generative Grammar:

Chomsky [97] generated the best results when going one step further through transformational

grammars, in later publications referred to as generative grammars. Those build on a limited

kernel of simple utterances, complemented with a set of grammatical transformation rules, trans-

ferring one correct utterance or fraction of an utterance to a new correct one. In successive publi-

cations, Chomsky derives a hierarchy of generative grammars, consisting of a series of 4 groups

of types with increasing expressive power, summarized in the following definitions. In the illus-

trating examples the symbols x, y, z, describe terminals, A and B stand for non-terminals and

w groups (possibly empty) strings of terminals [96, 99]:

Definition 30: Recursively enumerable grammars (Type 0) have no restriction at all in the pro-

duction rules; e.g., xxAByz → zzz.

A Foundations

 48

Definition 31: In Context-sensitive grammars (Type 1), the number of elements in the string on

the left-hand side must be smaller or equal to the number of elements on the right side; e.g., xAzB

→ AAxyzBBB .

Definition 32: In Context-free grammars (Type 2) all production rules produce a single non-

terminal on the left hand side; e.g., A → AzyB. Context free grammars can be applied when de-

scribing recursive language structures (nesting).

Definition 33: Regular grammars (Type 3): All production rules produce the form A → wB or A

→ Bw. These grammars can be applied on natural languages which do not require nesting.

The definitions show that all grammars include relevant higher type grammars

{Grammar of Typei+1 } Grammar Typei . (3.12)

Prominent examples of meta-languages used to describe software grammars are the Backus-

Naur Form (BNF) and the ISO-standardized Extented Backus Naur Form (EBNF). One of their

advantages (apart from a clear and comprehensive design) is their ability to describe context-free

grammars, meaning recursive structures. The following Backus-Naur grammar describes a recur-

sive language, expressing multiplication and addition.

<expr> ::= <number> | (<expr> * <expr>) | (<expr> + <expr>)

In the example, the non-terminal <expr> is recursively produced by terminals and the non-

terminal <expr>. The above used grammars are all textual grammars.

Definition 34: Textual grammars build languages through linear catenation of text.

An important limitation to the expressiveness of such textual grammars is their linear struc-

ture. Such linear conception makes it difficult to describe complex interdependencies. Overcom-

ing the limitation of linearity requires the step from textual grammars to graphical modeling. The

languages modeled graphically do not necessarily need to be graphical. On the other hand, textual

languages such as Pascal or XML could well be modeled graphically as well.

Definition 35: Graphical grammars are a special form of generative grammars which

describe the elements of a language and their relationships graphically.

Dynamic Network Notation Ulrich Scholten

 49

The remainder of the thesis focuses languages, dealing with the application of information tech-

nology. Although the term software language engineering is established in academia, this thesis

uses the word IT language engineering to include aspects such as hardware or user

ecosystems.

3.1.3 Graphical Language Engineering

The title term of this sub-chapter graphical language engineering requires clarification. It could

mean the engineering of graphical languages as well as the graphical engineering of language.

In this thesis both connotations apply as it will produce a graphically engineered graphical lan-

guage. Whenever necessary to focus on one of these specific meanings, the text provides clarifi-

cation.

The following three definitions introduce the necessary terminology:

Definition 36: A language is graphically engineered with one or more graphical grammars, op-

tionally complemented by textual grammars. One or more graphical meta-languages comple-

mented with optional textual meta-languages document the grammar.

Definition 37: Graphical languages are a special form of artificial languages which describe

their elements and relationships graphically.

Definition 38: Graphical meta-languages are special versions of meta-languages expressed as

graphical language.

This thesis uses – similarly to publications in the disciplines of computer science - the terms

graphical versus textual representation of data. Publications of more psychological orientation

use the terms diagrammatic versus sentential [100, 101].

Examples of graphical languages are the Business Process Modeling Notation [102] or Ladder

Logic [103]. A prominent example of such graphical meta-languages is the Unified Modeling

Language (UML) [104]. Graphical languages benefit when compared to textual languages from

the advantage of non-linear expressiveness. Through visual representation, complex interdepend-

encies can be expressed more easily [96]. In general, graphical representations support the human

perception process when positioning elements relative to each other with respect to structural

affiliation or graphical order of importance (expressed through retinal techniques, i.e. color,

shape, size, saturation, texture). From such explicit representation, the user’s brain is able to draw

conclusions through simple and direct perceptual operations. Publications in the fields of

A Foundations

 50

psychology denominate the human capability to infer on something based on a visual stimulus

perceptual inference. Graphical encoding, which focuses on the message to be conveyed and

which is adapted on the target group can amplify the overall cognition process [14, 15, 100, 101,

105, 106].

Part B realizes information visualization based on theory of graphical encoding.

An utterance of a graphical language is a collection of tuples:

 { (3.13)

with O being a set of graphical objects and L a set of locations [15].

The goal of graphical languages is to correctly express a set of relations and their structural

properties, the latter including the domain sets (the various entities involved) and their functional

properties. A fact is expressible in a graphical language, if it contains at least one utterance that

encodes all facts in the set and not more. This means, when modeling a specific set of

information, the language must not provide additional data which is not defined in the set. The

effectiveness of languages describes how well the expressed facts can be read. This however also

depends on the perceiver [15]. In a logical consequence, languages should be designed to meet a

specific target group’s way of thinking. Established graphical languages targeting the same group

might give guidance.

To improve effectiveness of a grammar, Mackinlay [15] suggests the principle of importance

ordering, requiring more important information to be presented more predominantly. Lastly,

efficiency depends on the composition of a graphic utterance. Composition efficiency however

depends strongly on the modeler. Procedural models or tool-based guidance of the modeler can

help improving efficiency.

The following definitions summarize the above:

Definition 39: The expressiveness of a graphical language describes its ability to express desired

information in a semantically and syntactically correct way.

Definition 40: The effectiveness of a language describes how well a language can express infor-

mation with respect to a specific target group.

Definition 41: The efficiency of an utterance describes how well it is modeled.

The remainder of this chapter deepens syntax, morphology and semantics in the particular

case of graphical language engineering. In definitions given by Clark, Evans et al. [107] and An-

dré [108] a software language ‘consists of models for concrete syntax, abstract syntax and for the

semantic domain’. This definition shows 3 deviations from the natural language oriented defini-

Dynamic Network Notation Ulrich Scholten

 51

tion 27. The terms morphology and phonology do not find further consideration. On the other

hand, the definition introduces a differentiation between abstract and concrete syntax. All com-

pared sources synonymously define abstract syntax as set of production rules of an utterance

without details on concrete representation [96, 107-109].

Originating from compiler theory, abstract syntax gives a high-level description of programs.

The abstract syntax in that context describes a tree structure with respect to statement, expression

and identifier [109].

Definition 42: Abstract syntax gives a high-level description of syntax, leaving out the specific

technical implementation.

However, standard specifications for languages such as BPMN also include graphical

representation of nodes and edges. The language engineered in this thesis shall have a distinct

representation (morphology) regardless of a technical implementation. The present work there-

fore applies a more inclusive definition of a grammar on graphical language engineering, leading

to:

Definition 43: Abstract morphology prescribes the representation of graphical elements, leaving

out the specific technical implementation.

Definition 44: Abstract grammar gives a high-level description of a grammar, using abstract

syntax and abstract morphology, but leaving out the specific technical implementation.

Following this line of thinking and again looking at the original definition in compiler theory,

the source syntax (called concrete syntax in language engineering) gives the actual representation

and the machine oriented encoding [109]. Likewise, Kleppe [96] defines concrete syntax of a

graphical language as a syntax, specific to the modeling environment. The present work adopts

this interpretation, which is more restrictive than definitions by Clark, Evans et al.[107] or André

[108] which do not specify the restriction of specificity to the modeling environment. The en-

hanced precision will avoid ambiguity in the following chapters, i.e. when speaking about gram-

mar definition, grammar instantiation and platform modeling.

Definition 45: Concrete syntax in graphical languages is a set of production rules specific to the

technical implementation.

A Foundations

 52

Definition 46: Concrete morphology in graphical languages prescribes the representation of

graphical elements specific to the technical implementation.

Definition 47: Concrete grammar in graphical languages is a set of rules consisting of concrete

syntax and concrete morphology.

Similar to other software language engineering efforts e.g., BMPN, this thesis does not give

specific attention to phonology. The word model appears in the remainder of this thesis in various

contexts. For the sake of differentiation, but also for the sake of illustrating the interdependence

of the different levels of models, the chapter suggests a stack motivated by model driven

development [110]. Table 7 describes the model stack applied on Graphical Language Engineer-

ing.

Level Model Graphical Language Engineering

M3 Meta-Meta-Model.

Abstract level to define M2

UML model for the meta-modeling

language applied in M2.

M2 Meta-Model.

Defines the structure of a model,

i.e. classes, attributes and associa-

tions.

Abstract Grammar.

Distinct production rules with

respect to Syntax and Morphology

of a language but agnostic to the

technical implementation

M1 Model.

Specific instantiation of the meta-

model from level M2

Concrete Grammar.

Distinct production rules with

respect to Syntax and Morphology

of a language and specific to the

technical implementation

 Transformation M1 ↔ M0 Transformation M1 ↔ M0

M0 A concrete object A concrete model, expressed

through the graphical language

Table 7: Stack for meta-modeling applied on graphical language engineering

Level M0:

On the lowest abstraction level, this chapter starts with the concrete object and moves step by

step into higher levels of abstraction. In graphical language engineering, the graphical language

models are the concrete artifact; they are the real-life object to be produced during the modeling

process. The finite set of well-formed utterances of a grammar (loaded with the specific seman-

tics) makes up a language. This object layer is called M0. In the context of Dyno, the concrete

artifacts are service networks.

Dynamic Network Notation Ulrich Scholten

 53

Level M1:

In IT languages, an editor generates the concrete object from the concrete grammar, placed on the

subsequent layer M1. Part B and C of this work exemplify a set of such models. M1 describes the

concrete grammar of a language, specific to the technical implementation. In the context of this

thesis, the technical implementation is specific to the chosen ORYX framework. ORYX serves as

modeling environment and repository for the Dynamic Network Notation. Chapter 6 further elab-

orates on an instantiation of Dyno within ORYX.

Level M2:

This level accommodates a meta-model, defining the abstract syntax of a language and the ab-

stract morphology giving the visual representation. Both are necessary and sufficient to complete

a graphical language as they describe the production rules and the representation. Therefore,

specifications of languages like BPMN also include both. This thesis applies the graphical meta-

language Unified Modeling Language UML [104] to produce the abstract syntax model for the

graphical language, complemented through the Object constraint language OCL. OCL is a sup-

porting textual meta-language. It specifies also how to adapt graphical representation in design-

time and in function of context-specific syntactical requirements (chapter 5). Graphics and de-

scribing text specify the generic representation of all objects, given by the abstract morphology.

Chapter 5 provides more detail on this.

Level M3:

The meta-languages used to define the meta-model sit on level M3. In the specific context of this

thesis, they define UML and OCL. Layer M3 is not further considered in this thesis. Details are

provided by the respective specification documents of the standardization bodies [104, 111].

In some languages, transformation between M2 and M1 can be automated. This thesis choses

a manual approach for creating a concrete grammar from an abstract syntax. Specific for lan-

guage engineering, a modeling environment accomplishes the translation from a concrete gram-

mar (level M1) into a concrete object (see chapter 6 for details).

A Foundations

 54

3.2 Network Effects

Central to the modeling language developed within this thesis is the theory of network effects.

Therefore, the present section focuses at an explanation of network effects. The present work

adapts and applies the related theory on service platforms. The section ends with a discussion on

why currently existing theory and the modeling language originating from business dynamics and

system theory are not sufficient to produce models that support platform design oriented on the

exploitation of network effects. The term network effect originates from system dynamics. Sys-

tem dynamics is macroscopic system behavior over time as described in system theory. Business

dynamics are economic systems which exhibit this behavior.

Definition 48: System dynamics describe macroscopic system behavior over time, built through

interaction of sources and sinks, stocks, flows and feedback loops

A traditional way to depict system behavior in the discipline of business dynamics is the Stock

and Flow Diagramming Notation [112], as depicted in Figure 7. It is shaped through four ele-

ments: Sources or sinks, stocks, flows and auxiliary variables. Sources or Sinks represent the

origin and final destination of any supply and are depicted as a cloud. In system dynamics, they

are assumed to have infinite capacity, meaning they can never be fully depleted or filled. When

being a source, it causes an inflow into a system, when being a sink, it is the destination of an

outflow. Stocks describe the storage capability of a system. They are depicted through a rectan-

gle. A stock can accumulate or deplete over time. It gives memory and inertia to a system. Flows

change the stock over a certain period of time. They can be inflows, filling the stock, or outflows,

emptying it. Auxiliary variables can influence the flow. They act like a regulator to the flow.

Auxiliary variables may be constant or variable exogenous inputs (meaning they originate from a

source outside the modeling focus). They may be also functions of stocks. Last, they may be a

result of cascaded influence from exogenous inputs or stocks within the system. The present work

speaks of second level variables, when those influence auxiliary variables and not flows. Their

toeholds are depicted through the symbol of a valve, implying the regulation of the amount of

flow, entering the stock.

Definition 49: Stocks describe a vessel which can accumulate or deplete.

Definition 50: Flows circumscribe the inflow into or outflow from a stock.

Dynamic Network Notation Ulrich Scholten

 55

Figure 7: Stocks, flows, auxiliary variables and causal loops,

depicted in the Stock and Flow Diagramming Notation (Forrester 1961)

Flows can be positive or negative. In example, the outflow from stock 1 (Figure 7), could be

modeled as inflow from the right cloud into stock 1. In that case, the flow would have a negative

sign. The role of a cloud as source or sink may vary over time. The present work brackets both as

source.

Definition 51: Sources are stocks outside the boundary of the model with assumed infinite

capacity.

Definition 52: Auxiliary variables regulate the flow. They can be cascaded. Their origins may be

exogenous or functions of stocks.

Figure 7 simulates a basic interplay of stocks, flows and auxiliary variables in the stock and

flow diagramming notation [112]. Feedback loops describe the reciprocity that a stock has on its

own filling or depletion, when impacting on the flow through an auxiliary variable. The loop in

Figure 7 consists of the stock as origin, the auxiliary variable which is a function of the stock, and

the flow filling or depleting the stock, whose magnitude is regulated by the auxiliary variable

(Sterman 2000).The present work refers to the feedback loops of auxiliary variables that are func-

tions of stocks and which impact flows as causal loops.

Definition 53: Causal loops are feedback loops, where the magnitude of a stock amplifies the

flow by a certain factor, which in reciprocity increases the stock again.

A Foundations

 56

Service platforms with consumers on the one side and service providers on the other side comply

with the definition of 2-sided markets. 2-sided markets may include various alternatives for caus-

al loops. Those loops can be same-sided e.g., demand-sided or supply-sided. They can also be

cross-sided, involving both sides of the platform [20, 22, 113].

The present subsection uses the example of a two sided platform to derive and illustrate net-

work effects. In explicit, it considers network effects around the subscription base of consumers

in a platform, as well as the base of third party services (complementary services). The subscrip-

tion base of a platform is a stock. It can have a causal loop, which might be of minor impact if

consumers are not really sensitive. The causal loop describes that the bigger a subscription base

is, the more it attracts potential consumers to subscribe. This subscription rate is the flow. As

schematized in Figure 7, the resulting increased subscription base (stock) further amplifies the

flow. Mathematically, this effect can be expressed through the exponential function

 (3.14)

where B describes the subscription base, B0 denominates the subscription base at the time t0,

 the fractional growth and t the time. In reality, exponential behavior is limited to s-shaped be-

havior due to saturation effects. This effect is also called the logistic curve. The system behaves

differently when accumulating and when dispersing due to its stock. This behavior is called non-

linear.

Definition 54: Non-linearity is the effect within causal loops, where manipulations are not linear-

ly reversible, due to the accumulative behavior of stocks.

Academic literature offers several options to mathematically describe and model system dy-

namics and their respective ecosystems. A common approximation to estimate size and growth in

networks around service platforms is the Bass diffusion model, describing the share of the

potential new adopters subscribing at time t as equal to a linear function of previous adopters

[114, 115].

 (3.15)

With

M - the potential market (meaning the ultimate number of subscriptions),

b(t) - the portion of M that subscribes at time t,

Dynamic Network Notation Ulrich Scholten

 57

B(t) - the subscribed base at time t,

A(t) – the cumulative subscribers at time t.

p - the coefficient of innovation,

q - coefficient of imitation.

Although being regularly applied in the context of two-sided markets, the Bass diffusion mod-

el has a range of disadvantages, deterring the adoption of this option for service management on

platforms:

 The Bass model assumes the potential market to be constant. However the market of

platform users is open, with continuous inflows from mature industries. Holt, Weiss et

al [4] speak of industry takeaways. Those takeaways can only be roughly approximat-

ed but not be quantitatively modeled;

 Similarly, the coefficients of innovation and imitation could only be roughly estimat-

ed, particularly in the context of new markets and disruptive solutions, where compa-

rable coefficients are lacking.

 The calculated results risk being erratic with no applicability.

An alternative approach to capture these network effects is to quantitatively model platforms.

The Section therefore continues with modeling service platforms in their competitive environ-

ment based on causal loop diagrams. Figure 8 shows a causal loop diagram around a service plat-

form, modeled with the simulation environment VenSim [116]. The generation of such a model

with reliable data is challenging as holistic data on competitors and consumers, required to quan-

titatively model such a complex environment is highly volatile and difficult to attain.

It integrates patterns for models on network and complementarity effects by Sterman [8], ap-

plied and adapted on a service platform use case and its business ecosystem. Platform 1 repre-

sents the analyzed platform. All competition is encapsulated into platform 2 and its respective

business ecosystem. The model shows a same-sided causal loops around the feedback loops R1.

These loops originate in scale effects on the platform’s attractiveness, limited through competi-

tive attractiveness and total demand. Scale-based attractiveness depends on subscription base, the

consumers’ sensitivity to the installed based and a certain threshold for scale effects. Total attrac-

tiveness of a platform is also influenced by attractiveness of complementary third party services.

The attractiveness through complementary effects is part of a cascading loop R2, including the

stock of third party services. This stock of third party services is again function of scale effects of

the platform, market share and additional service offer. The model aggregates other effects in

loop R1 through a random function.

A Foundations

 58

Following Sterman’s [8] theory on dynamic markets, attractiveness of a Service platform P1

is the product of various types of attractiveness, impacting on total attractiveness Aj, e.g.,

attractiveness of price, attractiveness through a trust relation, but also attractiveness resulting

from causal loops e.g., through the number of subscribed users inciting other users to subscribe.

AP1 = ∏

 (3.16)

The market share of a platform is

 (3.17)

where stands for platform P1’s attractiveness and for the aggregation of all other

platforms’ attractiveness.

Dynamic Network Notation Ulrich Scholten

 59

.

F
ig

u
re

 8
:

S
im

u
la

ti
o

n
 o

f
a

se
rv

ic
e

p
la

tf
o

rm
 i

n
cl

u
d

in
g
 e

co
sy

st
em

 a
n
d

 c
o

m
p
et

it
io

n
,

si
m

u
la

te
d

 w
it

h
 t

h
e

to
o

l
V

en
S

im
 [

1
1
6

],
 b

as
ed

 o
n

 t
w

o
 m

o
d

el
s

o
n

n
 n

et
w

o
rk

 a
n
d

 c
o

m
p

le
m

en
ta

ri
ty

 e
ff

ec
ts

 b
y
 S

te
rm

an
 [

8
]

A Foundations

 60

The attractiveness resulting from the network effect (network attractiveness) in loop R is

 (3.18)

where is the sensitivity to the subscription base and the normed subscription base (which

is the subscription base relative to the threshold). The critical mass is the threshold of required

subscribed subscribers, above which the subscription base has impact on attractiveness.

Formula (3.18) shows that network attractiveness needs, to incite visible exponential be-

havior, a basic amount of subscriptions (or other relevant activities) above a threshold.

Definition 55: Network attractiveness is defined through an exponential function of the product of

a network participant’s sensitivity to a stock and the magnitude of that stock relative to a thresh-

old. The threshold delimits the magnitude where the impact starts.

Definition 56: A network effect takes place within a causal loop, when network attractiveness

grows exponentially.

Definition 55 highlights a difficulty in this quanitative model. Sensitivity and threshold are theo-

retical parameters which help understanding the mode of action. However they would be difficult

to determine a real life model. Figure 7 shows many valves which could be the toeholds for caus-

al loops. To generate strong network effects, the causal loop has to address an inflow, coming

from a source of large size. If the source is small, the network effect will abate, once the source is

used up. However, a causal loop, starting at a source of (theoretically) infinite size could cause a

strongly growing network effect. The present work uses the term strong network effect referring

to this growth behavior. For those causal loops where either network attractiveness is below the

threshold or the capacity of the source remains small, the remainder of the text remains un-

specific and uses the term causal loop.

Definition 57: A strong network effect takes place when at least one causal loop fulfills two nec-

essary conditions: accumulation in a stock exceeding the delimiting threshold and a sufficiently

high source allowing for exponential growth of network attractiveness.

Definition 58: The critical mass of a stock is the magnitude that is equal to the threshold required

to exhibit exponential behavior.

Dynamic Network Notation Ulrich Scholten

 61

The dependency on a threshold of participation entails that a platform starting from zero needs a

base value contribution outside a causal loop, which initially starts off this process and attracts

the required subscriptions to surpass the normed subscription base , unless the threshold is

very small. The longitudinal study showed that all Web-service intermediaries apart from SeekDa

and StrikIron lacked such a base value outside their causal loops. The services offered services

based on a cross sided network effect (as shown in Figure 8). In such a constellation, successful

platforms need to surpass a critical mass of services on offer to attract users. They also need a

successful number of users to attract service providers. None of the intermediaries achieved this.

The explorative study also brought to light causal loops with require only small thresholds for

network attractiveness. The platform for online file hosting Dropbox achieved network attrac-

tiveness in offering cooperation between several users on the same file. This lead to a small criti-

cal mass of the magnitude m = 2. Also the project platform Trello uses collaborative scenarios to

create network attractiveness with small quantities of users. The company IMVU provides instant

contact possibilities with other members of a community of shared value and motivates users to

join through the intrinsic motivation of being awarded with social contacts [117].

The network dynamics described above result from the network effect R1 (Figure 8) in con-

junction with the counter-acting loop of share saturation (B1), caused by the activity of competi-

tion. The App-Exchange marketplace by Salesforce in its initial design is an illustrative example

for such a same-sided causal loop as it is restricted to Salesforce consumers. The more consumers

offer their application for application exchange, the more consumers are inclined to look for the

offers. However, there are more loops in this model. Important are the cross-sided network ef-

fects, added through complementarity effects with service providers (indicated through a com-

plementarity loop R2 displayed Figure 8.

A platform’s attractiveness to a service provider is also exponentially dependent on the sub-

scription base. This leads to a cross-sided effect, when platform attractiveness to consumers is

further increased through an increased provision of services. In return, the increased consumer-

base will again increase platform attractiveness to providers. It is plausible that the more cross-

supporting loops are created, the stronger is the overall network effect. Salesforce’s Force.com

platform illustrates this cross-sided effect. With more consumers looking for offers, the attrac-

tiveness rises for the third party service providers to offer services. To cream off cross-sided net-

work effects, Salesforce.com complemented their same-sided marketplace with the development

and deployment environment for external service Force.com. The size of Salesforce’s consumer

base has direct effect on the suppliers’ motivation to offer own services. The increasing amount

of services offered increases the platform’s attractiveness to the consumers.

Figure 8 illustrates an important characteristic of attractiveness related to network effects:

Through the subscription base, it scales up with the causal loop of the network effect. The effects

of Other Factors on Attractiveness on Platform 1 in contrast remain constant (abbreviated as c).

A Foundations

 62

c in the Salesforce example has a share of impact through the company’s CRM-as-a-service. Be-

fore any network effect occurs, it helps filling the initial subscription base until it surpasses the

threshold. The relative subscription base (meaning: relative to the total subscriptions in the mar-

ket) of Platform 1 is

 (3.19)

Substituting attractiveness in (3.17) with (3.18) and (3.19) leads to

 (

)

 (3.20)

which displays market share of platform 1 as a phase-plot of relative subscription, with the ag-

gregated non-network related attractiveness c as amplifier.

Figure 9: Market share of platform 1 (for sensitivities 0.1, 0.5, 1, 5) as a phase-plot of

relative subscription base, based on [8]

Figure 9 depicts this phase plot. In a first step, focus is the network impact under the condition

c=1. On the 45° line, the system is in equilibrium, as the current market share is equal to the rela-

tive subscription base. In cases where the slope is > 1, small changes in the relative subscription

might cause significant changes in market share (instable equilibrium). On the other side, areas

where the slope is strongly <1 do not provide much scope for influence (stable equilibrium).

Dynamic Network Notation Ulrich Scholten

 63

Figure 10: Simulation based on the model in Figure 8, with 2 competing platforms of a same-size

consumer base of 50.000 users

Once, a dynamic process sets off, loops may self-fertilize and potentially grow towards a mar-

ket dominating position (lock-in situations), making it particularly difficult for challengers to

successfully introduce competitive solutions [8]. Figure 10 shows a simulation based on the mod-

el in Figure 8, where the market of platform 1 collapses in year 5, although both platforms started

with the same subscription base of 50.000 consumers. However, the phase plot in Figure 9 illus-

trates that similar inertia applies, when a new entrant tries to initiate system dynamics from the

beginning. Prerequisite to success is the initial value proposition (base value), which needs to be

important enough attract a critical mass of first movers among service providers. With respect to

the phase plot Figure 9, the best start off condition for an initial value is to have a low sensitive-

ness to scale. The value proposition with the sensitivity 0.1 has much easier grounds to

start off than a value proposition with high sensitivity (e.g., 0.1). Compliant to this re-

quirement, Salesforce.com started off offering only own services, which are only subject to min-

imal scale effects. In the longitudinal study from Section A, all sample intermediaries (apart from

Seekda) depended on quantities of third party Web services and of consumers. In the phase plot

this corresponds to an elevated sensitivity to scale. This means, network effects only appear,

when either a high subscribed base of consumers or of deployed 3rd party services is already on

board. StrikeIron’s Marketplace started with a range of own services. But figures show that this

base value was not sufficient to attract a consumer population, strong enough to incite a cross

sided network effect with 3rd party service providers. Seekda’s unsuccessfulness cannot be ex-

plained through considerations of one-sided network effects, as – through crawling – they medi-

ated more than 70.000 Web services. Data shows that Seekda did not incite a cross-sided network

effect in spite of this high quantity of mediated services. The available data does not provide

A Foundations

 64

sufficient information to explain this. Theoretically, the identified low average quality of service

and the lack of business model could be probable reasons.

The above calculations and simulations provide a holistic and integrated explanatory model of

network effects around service platforms and their ecosystems. However, this quantitative ex-

planatory model is unsuitable to provide answers to the modeling requirements of platform archi-

tects and solution managers. The reasons lie in the quantitative aspects of the model and in the

lack of architectural consideration.

Conclusion

The quantitative model relies on estimated data. Formula (3.16) formulates market share as a

function of the relative subscription base. The function has an exponential constituent. Small

inaccuracies in sensitivity or threshold can lead to significantly different results. As accurate data

on competition and on behavioral parameters such as sensitivity and threshold are not available,

small variations in estimates might even produce diametric results. In consequence, a quantitative

model as output of the graphical modeling notation promises to be more reliable.

Dynamic Network Notation Ulrich Scholten

 65

3.3 Theory on Control

Katz and Shapiro [55], Schilling [118], Boudreau [119], Parker and Alstyne’s [20], as well as

Hagiu and Lee [120] research control in the context of opening technical platforms, enabling

cooperation of distinct supplier and user groups. The researchers consider control from a perspec-

tive of power through technology ownership, decision of technical evolution and distribution

rights. Being in control includes rights to appropriate value from a technology. Parker and

Alstyne’s [20] research explicitly comprises service platforms. They discuss implications of

platform openness on platform controllability. All the researchers of this group include network

effects into their reasoning. In contrast to the differential equations in the system theoretical

approach, their mathematical formulations take a static comparative or game theoretical perspec-

tive. They are equation based, describing points of equilibrium.

Closer to the system theoretical consideration of causal loops of Section 3.2 is the theory of

feedback loop control [121]. This theory dates back to the beginning of the 19th century. It de-

scribes the concept of a technical system being regulated by a control device aligning a reference

value with the fed back system output (Figure 11).

Figure 11: Feedback controlled system

The concept of feedback controlled systems was later extended under the name cybernetics on

social or organizational systems [122]. In that context, control theory became a sub-discipline of

system theory.

Definition 59: Feedback controlled systems are systems, being regulated by control devices,

aligning the reference value with the fed back system output.

Other researchers [43, 123-125] provided foundations on control modes for the management

in software engineering projects and provide knowledge as well as terminology and concepts.

Kirsch [43] groups control mechanisms within a taxonomy of four control modes. Further, she

provides guidance on the operationalization of control mechanisms in the context of software

development projects. She differentiates between formal and informal modes (Table 8).

A Foundations

 66

Ouchi [124] and Eisenhardt [123], refer to those formal modes as performance evaluation strate-

gy and to control mechanisms a bureaucratic mechanisms. They refer to informal modes as in-

formal social structure [124] or social or people-based strategy [123].

In Kirsch’s [43] taxonomy, the set of formal modes contains (a), behavior characterized

through articulated rules and procedures and (b) outcome, defined by expressed project outcomes

and goals. Formal control modes can be designed to be observable and are hence suitable in en-

forcement and reward-oriented approaches [43, 123, 124]. Informal modes include (c) self and

(d) clans. The present work replaces the term clan by community as this term established in the

platform context. The control mode self relies fully on an individual’s ability and competence to

self-control. Community-modes are suitable, where coalitions of individuals group around com-

mon values and beliefs [43]. Informal modes lack observability and hence their successful im-

plementation is difficult to observe. However, an organization can benefit from interpersonal

feedback-seeking dynamics in social structures self-regulating social processes [125]. Table 8

summarizes the four control modes.

Beyond Kirsch’s [43] software-engineering focused taxonomy, Ouchi [124] contributes a

market view through market-based mechanisms of control. In creating a situation of choice and

the availability of sufficient comparative information from the market, the market-based mecha-

nisms enable the service consumer to choose the option with the highest value to him.

Table 8: Modes and Mechanisms of Control, based on Kirsch [43]

Dynamic Network Notation Ulrich Scholten

 67

B Solution Design

4 Conceptual Model

Part A has led to the formulation of 3 sets of research requirements, RQ1 formulating require-

ments on structural representation, RQ2 describing requirements on process representation and

RQ3 stating the requirements on representation related to service management. For the purpose

of formalizing these requirements, this chapter provides related terminology and abstractions.

These form the basis for subsequent language engineering in Chapter 5. Table 1 outlines the con-

ceptualization of requirements into elements and groups of control mechanisms accordingly.

Table 9: Conceptualization of knowledge

The subsequent sections derive and conceptualize structural and procedural elements as well

as groups of control mechanisms: First, structural elements respond to RQ1, embracing different

areas of staged stakeholding power, areas with scale capability according to needs and areas of

similar behavior. Second, process elements relate to RQ 2, represented through nodes and edges,

allowing the modeling and analysis of causal loops and network effects. Finally, control mecha-

nisms relate to RQ3, supporting the implementation of service management. Each of these

B Solution Design

 68

subsections derives functional design requirements, which are kept non-specific to any graphical

language. The functional design specifications can thus also serve as a basis for the engineering

of the graphical modeling language in Chapter 5. The way they are formulated, they can also

serve to derive other kinds of models, e.g. of models without representation or models of mathe-

matical nature. When phrasing functional design requirements, subsections reference the IEFT

request for comment document RFC2119 on key words must, must not, required, shall, shall not,

should, should not, recommended, may and optional [126]. Consequently, the application of these

key words for language specification supports the usage of prescriptive voice. In the remainder,

the subsections do not further explicitly reference the RFC2119 documents.

4.1 Structural Elements

Research requirement set RQ1 asks for structural elements, representing the areas of staged

stakeholding power and their implications to service management. It also asks for elements,

representing areas with need to scale and for those which find infinite repetition. Subsection 4.1.1

derives the structural elements. Subsections 4.1.2 to 4.1.5 conceptualize and explain the elements

in detail.

4.1.1 Derivation of Structural Elements

The sections revert to the findings of Section 2.2 on areas of staged stakeholding power, as repre-

sented in Figure 3. The solution design adopts the terminology from that section. It reformulates

the definitions, given in Section 2.2 in the context of the constructs, formulated in this section.

Table 10 provides an overview of the solutions, elaborated in this section and substantiated in the

subsequent subsections.

Dynamic Network Notation Ulrich Scholten

 69

Table 10: Mapping of requirements with solution design

Subsections 4.1.2 to 4.1.4 conceptualize the areas of staged stakeholding power. The solution

design first proposes the structural element control area, representing an area of full stakeholding

power over all activities of service providers and consumers (4.1.2). The platform operator can

control all activities in this area. It is therefore the area where control mechanisms need to be

placed. Subsection 4.3 derives the control mechanisms when representing service management.

To avoid an overload of information, the present work specifies one single control area. As a

means to group elements within the control area, the section introduces the elements division and

division group subsequently. The influence area represents the area of limited stakeholding pow-

er. The modeler cannot place any control mechanism in this area. However, he can represent the

exertion of influence through the allocation of the process element influence. Subsection 4.2.6

elaborates on this influence element. The present work only formulates one influence area, em-

bracing the whole surrounding platform ecosystem. Iterations with user groups did not reveal any

requirement for sub-structuring elements in this area. The last introduced area is the noise area,

where the platform operator cannot exert any influence or control.

A second set of requirements in RQ1 are structuring elements within the area of full stake-

holding power. In particular they shall allow representation of those technical environments

which need to be able to scale. Also the requirement elicitation asks for representation of areas of

full stakeholding power, which find finite repetition. Subsection 4.1.5 suggests divisions and

B Solution Design

 70

division groups. The attribute scalable depicts whether a specific technical area needs to scale to

cope with the impact of network effects.

The present work refers to all these elements as structural elements. In many cases, the areas

also have a spacial implication (e.g. the location of a server, of a customer or of a supplier).

None of the graphical modeling languages, refered to in the related research Section 1.1 concep-

tualized staged areas of authority.

4.1.2 Control Area

The control area is the structural area where the platform operator has full stakeholding power.

From a technical point of view, that means having the capability of enforcing his technical infra-

structure on his servers or on his virtual machines in an infrastructure-as-a-service environment

and on all technically enabled activities which take place in the platform. Examples for the latter

are service consumption or service provisioning through third party providers. From an organiza-

tional point of view, this means that the platform operator can exert full stakeholding power over

workforce, e.g., internal teams, or external entities working on assignment. In the remainder of

this work, those players are referred to as internal participants, as opposed to external partici-

pants who are outside the control area.

The allocation of control mechanisms as points to exert service management is limited to the

control area. Also, from the control area the platform operator exerts influence over the ecosys-

tem participants. Rephrasing Definition 14 in the context of this chapter’s constructs leads to the

following definition:

Definition 60: Control area is the area where the platform operator can exert control over activi-

ties and internal participants. It is also the area from where he influences ecosystem participants

that are placed outside the control area.

The following functional design requirements result from the above: First of all, the control

area must be a structural element. All process elements within this area must be equipped with

control mechanisms. Those mechanisms shall be set false by default and can be activated by the

modeler. Process elements within the control area shall be allowed to be a source of influences,

pointing at ecosystem participants in the influence area. Table 11 maps the concepts on the con-

trol area with respective functional design requirements.

Dynamic Network Notation Ulrich Scholten

 71

Table 11: Summary table of functional design requirements for the control area

4.1.3 Influence Area

The influence area is the structural area of the ecosystem around the control area. Ecosystem

players, which are in or may come into a value exchanging relationship with the platform, are

located in this area. The section on process elements introduces elements to represent ecosystem

participants as well as to express relationships (4.2). This area does not allow for control through

enforcement, as it is outside the space where the platform operator can exert full stakeholding

power. The influences area therefore requires indirectly operating mechanisms of control, which

the platform operator exerts from the control area. The remainder of this work refers to those

mechanisms as incentivizing mechanisms. Details on how to exert indirect control follows in the

sections on control mechanisms (i.e. 4.3.3 - 4.3.8). In the influence area, the ecosystem partici-

pants can also influence each other. Lastly, they are subject to influences of entities external to

the ecosystem, e.g., competitors.

Definition 61: The influence area is the area where participants are located, which are in or may

come into value exchanging relationship with the platform. Ecosystem participants within this

area may be influenced by the platform operator, but also by other players within the ecosystem

or outside.

The concepts within this section allow the formulation of a series of functional design re-

quirements. The structural element influence area shall be allowed to accommodate process ele-

ments, representing ecosystem participants. Section 4.2 defines the possible elements. Elements

in this area shall be allowed to be a source of transactions into the control area. Being outside the

reach of the platforms full stakeholding power, the process elements within the control area must

not carry control mechanisms. To be influenced from the control area, all elements shall be al-

lowed to be the target of influences with source in the control area. The process elements within

B Solution Design

 72

this area shall also be allowed to be target of influences from all areas. Subsection 4.2.6 provides

a restrictive condition, defining when process elements can point directly at process elements

within the influence area and when they should pass a merging gateway. Table 12 maps the

concepts from this subsection with respective functional design requirements.

Table 12: Summary table of functional design requirements for the influence area

Dynamic Network Notation Ulrich Scholten

 73

4.1.4 Noise Area

The noise area describes the area around the ecosystem. Figure 3 in Section 2.2 shows that in this

area, the platform operator cannot exert any influence on the players. It accommodates competi-

tors and players uninterested in becoming customers. Players in the noise area are neither in a

relationship of value exchange with the platform operator, nor can they exert influence on the

platform operator or the included players. However they may influence the ecosystem partici-

pants around the platform and may thus cause a backflow of value (e.g., the unsubscription of

players from the platform).

Definition 62: The noise area embraces all areas outside the platform ecosystem. Whereas the

platform operator cannot exert any stakeholding power, the players in this area can influence the

ecosystem participants in the influence area. No value flow happens between noise area and con-

trol area.

The following set of functional design requirements result from this construct: The noise area

is a structural area around the influence area. The process elements within the control area must

not allow control mechanisms in this area. Neither shall elements in this area be allowed to be

target of influences from any area. On the other hand process elements in the noise area must be

allowed to be the source of influences, pointing into the influence area. Lastly, and as the ele-

ments are not in a relation of value exchange with the platform, elements in this area shall not be

allowed to be source of transactions into the control area. Table 13 maps knowledge and the

resulting functional design requirements.

Table 13: Summary table of functional design requirements for the noise area

B Solution Design

 74

4.1.5 Divisions and Division Groups

To better structure the control area, the present section specifies two sub-structuring elements,

which include only minor logic but which help structuring the control area. The division is a

frame to group elements, which belong together, e.g. because they build a set of solutions or be-

cause they are in the same physical location. The modeler shall decide which aspect is worth

highlighting.

Division groups describe finite sets of similar technical environments, which could be servers

at customer locations, or native applications on client PCs or mobile phones, controlled by the

platform operator. In areas where network effects apply, the modeler has to be aware that the

environment may require to scale. This concerns involved servers, services, databases or net-

works. Divisions can also group internal participants. In that case, there is no reason to talk about

technical scalability.

Definition 63: A division is a structural entity of homogeneous conditions within the control area.

Definition 64: A division group is a finite set of divisions within the control area.

As resulting functional design requirements, divisions shall be available but not mandatory to

group elements, limited to the control area. If those elements are available in a multiplicity, divi-

sion groups shall be available to group them. To be able to indicate those areas in need of scala-

ble infrastructure in cases, where network effects apply, both divisions and division groups shall

carry a Boolean scalability attribute. This attribute shall be set false by default but can be activat-

ed by the modeler. Divisions and division groups must not have any logic interdependence with

elements within the control area.

Table 14: Summary table of functional design requirements for the influence area

Dynamic Network Notation Ulrich Scholten

 75

4.2 Process Elements

From the process perspective, the requirements elicitation calls for a representation of (a) unspe-

cific and specific players in and outside the platform and the platform ecosystem; (b) influences

and transactions as well as (c) network effects. To conceptualize the process elements, Table 15

bases on system theory and suggests the process elements participant groups, participants, ac-

tivities, influences and transactions. Causal loops that incite network effects consist of a concate-

nation of elements and therefore do not require an element of their own.

Table 15: Mapping of requirements with solutions originating in System Theory

Whereas Subsections 4.2.2 to 4.2.6 conceptualize and explain the process elements in detail, Sub-

section 4.2.1 starts with the derivation of process elements. Importantly, Subsection 4.2.1 does

not contain the final notation. It is rather a working notation that helps formalizing process ele-

ments, while making the subject matter less abstract. The Dynamic Network Notation (Chapter 5)

will be more expressive than what can be depicted through the Stock and Flow Diagramming

Notation used to derive the process elements.

B Solution Design

 76

4.2.1 Derivation of Process Elements

Figure 12 explains the derivation of process elements, which are described in detail throughout

the following subsections.

Figure 12: Derivation of process elements based on System Theory

With reference to Figure 7 in Section 3.2, Figure 12 adapts the Stock and Flow Diagramming

Notation to the purposes of this thesis and applies terminology as well as elements and groups of

control mechanisms as introduced earlier in this chapter. It sets the model in the context of the

structural elements. Correspondingly, external participant groups are modeled as source in the

original sense of system dynamics. Those external participant groups consist of external players

of unspecific size and constellation (Subsection 4.2.2). Activities of cooperation, in turn, depict

stocks in the original sense of system dynamics. They depict points of action and interaction with

the platform and mostly technically enabled through the platform (Subsection 4.2.4), e.g., service

consumption or collaborative scenarios23. Next, the system dynamic symbol for flows expresses

transactions as flows of value into the activities in the platform (Subsection 4.2.5). Those activi-

ties accumulate, or, if the flow is inverted, deplete. Further, the Stock and Flow Diagramming

Notation is able to depict auxiliary variables, impacting transactions, coming either from

23 Following requirements of test users in field studies, the present work later loosened the restriction “technically enabled

through the platform” and allow also less technically interpreted forms of interaction.

Dynamic Network Notation Ulrich Scholten

 77

activities or from endogenous origins. In extension of the original stocks and flow diagramming

notation, Figure 12 depicts the source of those auxiliary variables as well.

Quantitative system dynamics looks at the interplay of sources and stocks, and, hence, does

not focus on individual participants. When intending to model service platforms in a well-formed

way, meaning with the inclusion of all relevant aspects specified in RQ2, the language needs to

be able to express those individual players. Figure 12 therefore complements the notation with a

symbol of an individual player, (Subsection 4.2.3), representing internal or external participants.

Being limited to one individual player, a participant can only have minor, close to static stock

capacity e.g. his employees or one customer can create limited value through subscription to an

activity or through the supply of limited amounts of services into an activity within a period of

time. They therefore could not serve as source or stock within a causal loop. The figure also

represents the platform operator’s intervention as another input to endogenous variables. It refers

to the platform operator as protagonist.

Summarizing these insights on system dynamic theory leads in a second step to a simplified

view on process elements used to develop the abstractions as depicted in Figure 13.

Figure 13: Simplified Stock and Flow Diagramming Notation with adapted terminology

in the context of structural allocation

B Solution Design

 78

Within this context, modifications embrace the following changes:

 Auxiliary variables impacting on the outflow of a participant or a participant group in

the influence area point directly at their symbol. This pinpoints the element under in-

fluence. Those auxiliary variables are now termed influence. As an example, the influ-

ence originating from activity 1 now addresses the symbol of the external participant

or participant group. Section 4.2.6 analyzes this role in depth.

 Auxiliary variables within the control area vanish completely. 1st layer auxiliary varia-

bles from the protagonist, pointing at inflows, become a point of control on that trans-

action. Those pointing at outflows become a point of control within the element, caus-

ing the outflow. The figure also replaces 2nd layer auxiliary variables, originating from

the protagonist through points of control on the influences.

 Loops around elements in the control area are now control points the element. As an

example, the looped auxiliary variable in Figure 12 originating from activity 1 and

pointing on its inflow is now represented through a point of control at the top left an-

gle of activity 1. Those points of control can bundle several internal influences and are

only depicted once.

The related graphical modeling languages, referred to in the related research section (Section

1.1) model specific participants, activities and value flows. Influence, exerted by the platform

operator on ecosystem-based groups of unspecific size and constellation do not find considera-

tion. Also none of the three languages considers or represents causal loops.

4.2.2 Participant Groups

Sources in system theory are accumulated stocks, perceived to be of infinite size. Their accumu-

lation process is outside the modeler’s focus. The source participant group describes groups of

players of unspecific size in or outside the ecosystem. Participant groups are sources to transac-

tions into the platform. They may describe e.g., the source of service provisioning, of develop-

ment activities, of subscription or of consumption. From an organizational point of view, they are

groups of individual persons or legal entities. There are several reasons for considering them as

sources. First, their formation process in not in the interest of the modeler. Second, their for-

mation is outside the scope of influence. Modeling the whole formation process would unneces-

sarily overload the model.

The present work does not adopt the system dynamic term of infinite size, as such abstraction

would be unfamiliar in the context of service management. System dynamics only uses the term

to describe the fact of being too big to deplete. The thesis instead speaks of finite large size and

terms the element participant group (Figure 13). A modeling language shall only allow the use of

Dynamic Network Notation Ulrich Scholten

 79

the element in the influence and noise area, as it describes groups of players external to the plat-

form. The element therefore must not be applied in the control area.

Definition 65: Participant groups are groups of individuals or of entities of finite large size with-

in influence or noise area.

In some cases, participant groups may not have or not desire any relationship with the plat-

form or vice versa. This stance rules out any exchange of value with the platform. As resulting

functional design requirement, participant groups in the noise area must not be sources of transac-

tions. However, as origin of an endogenous variable, those participant groups may influence eco-

system participants. For example, if a participant group represented the competition, it would

want to disturb the value flow into the platform. Figure 13 depicts this as influence on the partici-

pant group, being source of the transaction to activity 1 (which is the inflow into the system). The

resulting design specification is that participant groups, which are placed in the noise area, must

be able to influence participants of participant groups in the influence area. Subsection 4.2.6 sub-

stantiates that these influences should only act via a merging gateway.

If a participant group represents a group of ecosystem participants, it may either influence

other ecosystem participants as source of an endogenous variable, or may have a defined relation-

ship with the platform. An example for influencing other players are third party service suppliers,

which motivate targeted consumer groups to subscribe to the platform. The targeted groups of

potential consumers are an example for participant groups, which are in a relationship with the

platform. They are the source of a transaction into the platform. The resulting functional design

requirement is that participant groups in the influence area shall be able to be the source of influ-

ences, pointing into the influences area and of transactions, pointing at activities within the con-

trol area.

In the context of service management, the present work rules out platform operators being in-

fluenced by external players other than through their value contribution. This means, only trans-

actions may enter the control area. A platform’s reactivity to the competitive environment would

imply strategic adaption. Such adaption is part of corporate governance and concerns corporate

boards. It is not part of the operational frameset of service management. As a functional require-

ment, participant groups must not be the source of influences, pointing at elements within the

control area. Figure 13 depicts the possible roles of a participant group. The construct of a

participant group does not differentiate between a consumer and a supplier. This accounts for the

potential dual role of both and for the vanishing distinguishability between both roles.

B Solution Design

 80

Table 16: Summary table of functional design requirements for participant groups

4.2.3 Participants

The element participant describes specific players in the platform, as well as in and outside its

ecosystem.

From a system dynamic point of view, participants are small stock, perceived to be static in ca-

pacity and accumulation, where the formation process is not in the modeler’s focus, e.g. internal

teams providing own existing software solutions. A participant may occur in any area. Therefore,

the allocation of the element participant shall not be restricted. A participant may be the origin of

an endogenous variable. Figure 13 depicts the possible roles of a participant.

Definition 66: Participants are individuals or entities with small capacity within the control, in-

fluence or noise area.

Similar to participant groups, participants with no relation to the platform lead to the function-

al design requirement that participants in the noise area must not be sources of transactions. As

the origin of an endogenous variable, those participants must be able to influence participants of

participant groups in the influence area via a merging gateway.

If a participant is an ecosystem participant, it may either have a defined relationship with the

platform, or may influence other ecosystem participants as source of an endogenous variable. The

Dynamic Network Notation Ulrich Scholten

 81

resulting functional design requirement is that participants in the influence area must be able to

be the source of transactions pointing at activities within the control area. They also must be able

to be the source of an influence, pointing into the influence area.

In the context of service management, participants must not be the source of influences, point-

ing at elements within the control area. Figure 13 illustrates possible roles of a participant. Just

like participant group, the construct of a participant can be equally applied for consumers and

suppliers.

A participant is blocking within a causal loop, because of its close to static stock behavior.

Therefore the language should to the greatest possible extent exclude the possibility that modelers

apply it as sole source of influence on a transaction into the control area. A possible option is to

bundle influences that are heading into the influence area, and start at a participant through a

gateway, to allow for influences coming from activities.

As the objective is to fill the activities (stocks on the platform), meaning to increase platform

value, there is no reason to focus modeling on their depletion. Therefore the language does not

provide symbols for outflow into the influence area. A transaction with a negative flow could

represent this, if required. However, case study experiments revealed that some modelers would

like to model work flows, consisting of activity-participant-activity concatenations, connected

through transactions24. Thus, they can express situations, where a flow comes from an activity,

goes through an internal department of the platform operator for a specific treatment, e.g. quality

verification, and then goes into the next activity. Depending on the case, activity 1 might deplete

through that flow (e.g., in case of a development process on the platform), or remain unchanged

(e.g., when a service from activity 1 is deployed on activity 2 in an enhanced version such as

communication language translated to from English to Russian). Such a work flow is depicted

through the Stock and Flow Diagramming Notation in Figure 13. It is built through two concate-

nated flow diagrams, passing an individual player. The specific concatenation is not in conflict

with the fact that an individual player does not accumulate, as it simply passes the flow through,

while enhancing it in the same time. Even though the language shall allow this option, it requires

the modeler’s attention. An internal participant between two activities may cause bottlenecks,

when expressing human interaction within an automated process.

Figure 13 shows that the internal participant can be the origin of an auxiliary variable which

stimulates a value flow into the platform. For example, an internal department provides an exist-

ing (considered static) stock of services for deployment into activity 2. This provisioning may

serve as base value. The influence pointing from the participant to the external participant may

stimulate a value flow to fill activity 1. As a resulting functional design requirement, participants

within the control area shall carry the base value attribute. The default position shall be false.

24 Modelers familiar with business process modeling languages opted to this approach.

B Solution Design

 82

Table 17: Summary table of functional design requirements for participants

Similarly to participant groups, participants may model both consumers and suppliers.

4.2.4 Activities

Activities, as depicted in Figure 13, correspond to stocks in system theory. This means they can

accumulate and deplete. Activities represent the location for interaction of participants or partici-

pant groups in and with the platform. They are the target of participants or participant groups,

addressed through transactions. As shown in Figure 13, this leads to the functional design re-

quirement that incoming transactions from participants and participant groups within the influ-

ence area as well as from activities and participants within the control area shall be allowed. Be-

ing technically enabled locations in the platform, a functional design requirement is that activities

shall only be allowed within the control area. Also non-technically enabled interaction shall be

positioned in control area. Outgoing transactions shall be allowed to participants and other activi-

ties, describing workflows.

Interpreting the behavior of an activity, any accumulation shall be considered an increase in

value. This is justified by Definition 3 and Definition 4, stating that value denotes those attributes

with positive effects on performance of actions, objects and tasks. For example, the quantity of

Dynamic Network Notation Ulrich Scholten

 83

services deployed might have value to service consumers. Equally, the quantity of consumers

subscribed might create value for other consumers. Quantities of consumers subscribed also rep-

resent value to potential third party service providers. Activities have, in contrast to participants,

a time dependent state. The more participants get active, the more the stock activity accumulates

and vice versa. The stock shrinks when they unsubscribe.

Definition 67: Activities are variable stocks, describing the magnitude and kind of interaction of

participants and participant groups within the control area.

Activities can represent a base value to incite network effects. Such a base value within an ac-

tivity is of explicit relevance due to its exponentially growing network attractiveness, if fed by a

participant group (see formula 3.18 in Section 3.2). The resulting functional design requirement

is that activities shall include a base value attribute. By the default, this attribute shall be set false.

The original intention of an activity was a purely technically enabled space of collaboration in

the service platform. Iterative field studies showed that modelers bend this restriction. For exam-

ple, an activity may be considered a stock for budget, generated from subscription and reutilized

to influence additional subscriptions. As a result of the iterative learning process, this construct

now includes also non-technical activities with or by the platform operator. They are also placed

within the control area.

Table 18: Summary table of functional design requirements for activities

B Solution Design

 84

4.2.5 Transaction

Figure 13 depicts transactions from a system theoretical view as flows into a stock. They repre-

sent explicit value flows within, into, or from a platform. As resulting functional design require-

ment, a transaction shall be a flow. The subsections on participant groups (4.2.2), participants

(4.2.3) and activities (4.2.4) already derived and formulated most design requirements in context

of the interaction with the respective elements. Those are only summarized here. Participants and

participant groups in the influence area shall be allowed to be the source of a transaction. In the

control area, activities and participants shall be allowed to be a source of a transaction. Each

transaction must have exactly one source and only one target. Elements in the noise area must not

be source to a transaction. Element in the influence and noise are must not be target of a transac-

tion.

Value flows coming from the ecosystem can only target activities, as those are the only

elements inside the platform, which exhibit stock characteristics. Cooperation of external partici-

pants with a specific internal participant is also a form of cooperation enabled by the platform

operator. Therefore it shall be modeled as collaboration via an activity. The resulting functional

design requirement states that transactions originating in the influence area must address an activ-

ity. The previous sections described various forms of work flows within the control area. Those

lead to the functional design requirement that activities and participants in the control area shall

be allowed as targets for transactions originating within the control area.

To ensure robustness of a model over time, a transaction’s arrowhead always points into the

ecosystem. Potential depletion such as the un-subscription of consumers shall be considered as

negative flow in the unchanged transaction symbol. Of particular interest with respect to network

effects are transactions coming from participant groups, as they can accumulate the stocks within

an activity.

Reformulating

Definition 5 in the context of structural elements leads to

Definition 68: Transactions describe value flows into, within or from the control area. Their

source is either in the influence or in the control area.

Dynamic Network Notation Ulrich Scholten

 85

Table 19: Summary table of functional design requirements for transactions

4.2.6 Influence

Influences steer ecosystem participants or ecosystem participant groups through stimulation to-

wards a specific value flow into the platform. From a system theoretic perspective, influences are

auxiliary variables, which control the rate of flow of transactions through the stimulus of their

sources. As resulting functional design requirement, influences must exclusively address partici-

pants or participant groups, either directly or via merging gateways. Their targets shall be limited

to the influence area.

Various stakeholders might want to exert influence on ecosystem participants. First of all, the

platform operator or persons active in activities within the platform are interested in value flow

into the platform. Second, other ecosystem players may want to stimulate participation, e.g. ser-

vice providers, whose services are deployed in the platform. Lastly, unrelated participants may

want to exert influence. For example, competitors might want to hamper value flow into the plat-

form. In consequence, the functional design specification demands that the sources of influences

shall not be restricted to any area. Participants, participant groups and activities shall be allowed

as source to an influence.

Definition 69: Influences are means to stimulate the rate of value flows at their sources.

B Solution Design

 86

The present work considers influences as group of stimuli on ecosystem participants. In an un-

controlled way, it might be any action without intervention of the platform operator and potential-

ly without effect (e.g., exchange of information between ecosystem participants). When equipped

with a control mechanism, this means that it is amplified through the platform operator’s incen-

tives, i.e. market-regulative control, informative control and motivational control. Subsections

4.3.6, 4.3.7 and 4.3.8 substantiate this.

Transactions as introduced in Subsection 4.2.5 describe an explicit exchange of value between

explicit entities (i.e. the platform operator, one ecosystem participant or an internal participant).

Influences are less focused, i.e. when addressing participant groups e.g., with information on

quantity of deployed services. Such information might influence members of a specific partici-

pant group to subscribe to a platform. The information on quantity of deployed services might

even influence several participant groups. As a functional design consequence, influences shall

be allowed to have several targets. Optionally, but not mandatorily a language might depict this

through a gateway with one entrance and several outputs.

Also, influences of several sources may aggregate in one resulting source, stimulating a partic-

ipant or participant group. As functional design specification this leads to the requirement that

several influences shall have the possibility to address the same target. This design specification

could optionally be accomplished through a gateway.

The influence of a participant or participant group in the influence or noise area on a partici-

pant or a participant group in the influence area is beyond control of the platform operator. In

consequence, to ensure that the platform operator is not inactive in influences in the influence

area, the modeling language should25 support that at least one influence originating from the con-

trol area is among the influences. Also a language should26 help to avoid the creation of loops

which do not include stocks in the control area (activity) or large size sources (participant groups)

in the influence area. A too restrictive specification may reduce a modeler’s scope of freedom

and hence the language’s expressiveness. This functional design specification therefore recom-

mends the following: Influences with activities as sources should be able to directly address par-

ticipants or participant groups in the influence area. Influences from all sources other than from

an activity should require a merging gateway, with one or more resulting influences pointing at

one or more targets. The latter intends to focus the modeler’s attention on the potential adding of

an activity. As there may be specific cases where no activity should be in the loop, the gateway

must not enforce one or more activities as source. To support the inclusion of participant groups

into causal loops, the present work suggests a consecutive analysis with recommendation after

the modeling process.

25 The RFC2119 suggests applying the verb should when there may exist reasons to ignore the requirement. In consequence the

implementation demands careful weighting.
26 Again use of the verb should for the above reasons.

Dynamic Network Notation Ulrich Scholten

 87

Table 20: Summary table of functional design requirements for influences

4.3 Control Mechanisms

The previous Sections of this chapter structured the knowledge on how to model platform design

and how to bind in the ecosystem in favor of harnessing network effects. This section responds to

research requirement RQ3 grouping service management mechanisms and allocating them in the

context of structure and process elements to allow for managed self-organization.

Section 2.6 revealed mechanisms of intervention, which give successful platform operators

ways to manage services and service consumption through managed self-organization. This sec-

tion sets those into context with the above introduced structural elements and process elements.

The section starts with an overall categorization of the control mechanisms, based on various

control concepts as well as system theoretical concepts, introduced in Sections 3.2. and 3.3. Be-

fore categorizing the control mechanisms, the present work groups those prescriptions, which the

platform operator communicates a priori to potential users with intent to steer their course of ac-

tion and to set the rules of cooperation (Subsection 4.3.2). In addition, the section categorizes the

enforcing mechanisms as prescriptive control (Subsection 4.3.3), restrictive control (Subsection

4.3.4) and sanctioning control (Subsection 4.3.5) leading to respective functional design require-

ments. Similarly, it categorizes incentivizing control mechanisms, in specific market-regulative

control (Section 4.3.6), informative control (Section 4.3.7) and motivational control

(Section 4.3.8).

B Solution Design

 88

4.3.1 Derivation of Control Mechanisms

The previous sections captured sources, flows, stocks and auxiliary variables set in the context of

structural allocation around a service platform. Transactions represent the flows, activities de-

scribe stocks, participant groups describe the sources of flows and participants stand for addition-

al sources with small variables. Participant groups, participants and activities can be the sources

of influences, depicting the auxiliary variables. Figure 13 describes the interplay.

However, the model still lacks control mechanisms, which are able to steer the causal loops

around the platform into the right direction. Adding control mechanisms into causal loops turns

those loops into controlled feedback systems (compare Figure 11in Section 3.3). Figure 13 visu-

alizes the allocation of these mechanisms through bullet points. Respecting the limitation of full

stakeholding power to the control area leads to the exclusive positioning of control mechanisms

within this area. Figure 13 shows three possible positions:

 on transactions, regulating the inflow (resp. outflow) into an activity;

 on activities, regulating the interaction;

 on influences, regulating the feedback into the ecosystem.

Applying the concept of feedback control on the present theory leads to the following defini-

tion:

Definition 70: Control loops are causal loops which carry control mechanisms on transactions,

activities and influences to manipulate their progression.

The challenge is to find and allocate the right control mechanisms in pursuit of managed self-

organization. Doing that needs incentivizing and enforcing control mechanisms to manage eco-

system participants and services.

The present work uses Kirsch’s [43] four control modes as starting point for the allocation of

control mechanisms for service management in platforms and for the derivation of functional

design requirements. Table 8 summarizes the four control modes. Beyond Kirsch’s [43] software-

engineering focused taxonomy, Ouchi [124] contributes a market view through market-based

mechanisms of control. In creating a situation of choice and the availability of sufficient compar-

ative information from the market, the market-based mechanisms enable the service consumer to

choose the option with the highest value to him.

Dynamic Network Notation Ulrich Scholten

 89

Table 21: Modes and Mechanisms of Control, based on Kirsch [43], modified and extended

Table 8 extends Kirsch’s [43] table, mapping the control mechanisms to the control modes.

This enables the present section to build on existing knowledge on control modes, key character-

istics and antecedent conditions, when defining the control mechanisms and when deriving re-

spective functional design requirements. The mechanism market-regulative control complements

the taxonomy in Ouchi’s [124] market view. In addition, the table groups these mechanisms ac-

cording to their enforcing or their incentivizing orientation.

Table 22 maps the revealed mechanisms with their accommodating elements. Activities carry

the enforcing mechanisms prescriptive and sanctional control. They further accommodate mar-

ket-regulative control, informative control and motivational control. Participants may just carry

prescriptive control: transactions are limited to restrictive control. Influences can work with mar-

ket-regulative control, informative control and motivational control. The following subsections

provide substantiation on this.

B Solution Design

 90

Table 22: Activities, participants, transactions and influences with their suitable control mechanisms

Among the graphical modeling languages referred to in the related research section (Section

1.1), only e3control by Kartseva et al. [29] consider patterns of control. The goal of these control

patterns is the exploration and mitigation of opportunistic behavior of the counter actor, leading

to disrespect of contractual agreements. The authors limit their consideration on flowes of con-

crete value exchange, based on contractual agreement. They suggest six control patterns, i.e. en-

forcement through penalties, reward-based incentives, observation-based patterns (partner screen-

ing and execution monitoring) and provision of documented evidence (through proper contracting

and through execution confirmation). The present work also conceptualizes enforcing mecha-

nisms. Apart from a penalty-based sanctional control mechanism, it introduces two more enforc-

ing categories, notably prescriptive and restrictive control. Also with respect to the incentivizing

mechanisms, the present work is more exhaustive, suggesting one reward-based and two intrinsi-

cally motivating incentivizing mechanisms. Oberservation is no individual mechanism in this

thesis, but an immanent element of each mechanism. Lastly, documented evidence does not find

consideration in the present work, as processes in service platforms are considered tracable.

Dynamic Network Notation Ulrich Scholten

 91

4.3.2 Service Platform Provisions

Through the provision of service platform provisions, platform operators define basic conditions

to cooperation with ecosystem participants.

Definition 71: Service platform provisions are documents, defining restrictions to and rules of

participation and cooperation for participants in activities in service platforms.

 As condition for participation, platform operators may provide development frameworks in

form of programming specifications or software development kits. The objective is to ensure

development according to guidelines, in order to achieve a defined level of service level meas-

urement quality, business process quality, suitability for standards, security quality and managea-

bility quality. On the service consumption side, users e.g., have to conform to requirements such

as the provision of a payment method or the explicit acceptance of the platforms terms and regu-

lations.

Service platform provisions are documents that provide the basis for ecosystem participants to

start and maintain a relationship with the platform operator. Those provisions are the basis for all

restrictive and sanctional control. As resulting from functional design requirement, service plat-

form provisions should be provided as textual documentation or a link to a document. It shall

always possible to map any service platform policy with any restrictive or sanctional control

mechanisms (Table 23).

Table 23: Summary table of functional design requirements for service platform provisions

B Solution Design

 92

4.3.3 Prescriptive Control

Behavior of ecosystem participants, e.g., of developers in a software engineering process, can be

guided through articulation of rules and procedures as defined in service platform provisions.

Table 8 specifies as an antecedent condition the observability of behavior [43]. Platform opera-

tors can accomplish observability of behavior through the mandatory allocation of third party

activities into the control area. Having the activities allocated within the area of full stakeholding

power, the platform operator can a) observe and b) steer the activities of external participants and

modify their outcome. The present work terms this interplay of observation, steering and modifi-

cation prescriptive control. As internal participants are in hierarchical subordination to the plat-

form operator’s authority, the present work also equips them with prescriptive control. There may

be cases where prescriptive control references service platform provisions.

Definition 72: Prescriptive Control is the sequence of observing and steering a participant’s set

of actions within activities as well as of internal participants. For actions in activities, it may

further include subsequent corrective measures on their results through the platform operator.

As a result of functional design requirement, prescriptive control shall be located exclusively

in all activities and participants, within the control area. The mechanism shall be set false by de-

fault. It may be activated by the modeler. It shall be able to represent service platform provisions

as textual documentation or as link (Table 24).

Table 24: Summary table of functional design requirements for prescriptive control

The following paragraphs illustrate the mechanism of prescriptive control with the example of

the activities service development, service deployment and customer subscription.

Dynamic Network Notation Ulrich Scholten

 93

Service development

The platform operator can observe the service provider’s behavior during the service develop-

ment phase through prescription of a development environment, located on the service platform.

Enforcing development in such an environment gives an additional advantage, beyond observa-

bility of development behavior. It allows the developer’s scope of freedom to be limited in such a

way that only solutions compliant to the platform operator’s expectation are possible. Identified

ways to limit freedom are to prescribe development languages and tools (Chapter 2, Table 5).

Thus the platform operator ensures:

 Manageability quality: The software design can be steered in a way that – once de-

ployed - the platform operator can observe the final code and can manage it (e.g., ad-

aptation of code sequences due to hardware changes). A prescription of a limited range

of programming languages simplifies this task.

 Security Quality: The tools can enforce specific security solutions in function of spe-

cific requirements. The above stated manageability quality even allows for subsequent

modification of the security quality in function of specific requirements.

 Suitability for Standards: The programming environment can enforce through limited

choice of options and tools specific standards and interoperability, e.g., with respect to

the platform’s API.

 Service Level Measurement Quality: The platform operator can enforce a software de-

sign that facilitates enhanced observability with respect to service quality features i.e.

response time, accessibility and successability.

Service deployment

When following the integrator concept, service deployment mandatorily takes place within the

control area. This gives the platform operator the power to observe and manage service quality.

The degree of influence depends on the platform policy. If full freedom of service development is

given, as in the case of Facebook27, the platform operator’s scope of control is limited. If an activ-

ity development proceeds within a programming environment on the platform, the platform oper-

ator can benefit from prescriptive control scope during the whole service life cycle, through man-

ageability quality, security quality, suitability for standards and service level measurement

quality, as described above.

27 http://developers.facebook.com/docs/sdks/, retrieved 11.02.2013

B Solution Design

 94

4.3.4 Sanctional Control

Activities in the platform are subject to an additional mechanism of control, called sanctional

control. The platform can sanction services deployed or users subscribed. Sanctions take force in

the moment of a breach e.g., copyright infringement or service underperformance. The platform

gathers information e.g., through automatic verification, through service support (call centers) or

through complaint management systems. After the discovery of such an infringement, an escala-

tion routine takes place. Depending on aspects of safety, security or the importance of the breach,

the escalation routine can vary from defined time for correction or statement requested from the

participant to immediate undeployments.

Definition 73: Sanctional control describes the enforcing action of the platform operator on poli-

cy breaches in activities through an escalation routine, including discovery processes, scope and

time of reaction for the participant and range of enforcements through the platform operator.

As a result of functional design requirement, sanctional control shall be located in all activities

and only there. The mechanism shall be set false by default. It may be activated by the modeler. It

shall always be possible to map any service platform policy with any restrictive or sanctional

control mechanisms (Table 25).

Table 25: Summary table of functional design requirements for sanctional control

The following examples illustrate sanctional control. Facebook [84] specifies in its platform

provisions potential restriction of service providers’ and service’s access to platform functionali-

ty, termination of agreements or any other necessary action in case of infringement28.

Salesforce.com has a 2-staged escalation routine. The company proactively removes allegedly

infringed services or applications after notification from the market. At the same time,

Salesforce.com [127] informs the provider of the service or application. On the service provider’s

28 https://developers.facebook.com/policy/

Dynamic Network Notation Ulrich Scholten

 95

request, Salesforce will the redeploy service or application. In the last stage of the escalation rou-

tine, a court or service provider and notifying body unanimously need to request undeployments

to lead to the final removal from the platform29. All analyzed platforms possess termination

clauses and routines in case of policy breaches, which the platform can enforce automatically.

The surveys typically encountered sanctional control during the operating phase. However,

applications in other phases (i.e. during the design or deployment and update phases) should not

be ruled out.

4.3.5 Restrictive Control

In service management of platforms, restrictive control applies on transactions, filtering the

value flow into an activity. The necessary condition for a value to be let through is compliance

with the service platform provisions. Restrictive control belongs to the formal control modes. As

the platform operator does not observe the generation of a value (e.g., a process of service devel-

opment or of participant subscription), the performance of restrictive control relies on outcome

measurability as an antecedent condition (Table 8).

Definition 74: Restrictive Control is a filter mechanism on transactions placed within the control

area and verifying compliance with service platform provisions.

As resulting functional design requirement, restrictive control shall be located exclusively in

all transactions, within the control area. The mechanism shall be set false by default. It may be

activated by the modeler. It shall always possible to map any service platform policy with any

restrictive or sanctional control mechanisms (Table 26).

Table 26: Summary table of functional design requirements for prescriptive control

29 http://www.salesforce.com/au/company/legal/intellectual.jsp

B Solution Design

 96

The following examples illustrate restrictive control. On the participant’s attempt to enter the

activity consume, all analyzed platforms impose standard requirements e.g., the availability of all

contact information, payment information or any other credentials. If the verifications exhibit

incomplete or erratic information, the platform requires the user to complete it. After successful

completion, the user is granted access to the platform. Service providers pass through a similar

procedure.

Additional restrictive control applies when the service providers supply a service to the plat-

form. The platform compares the service with the articulated provisions. In case of non-

compliance, the platform refuses access and potentially asks for amendment. Such restrictive

control can generate the same outcomes as enforced development within a programming envi-

ronment, with respect to a service’s manageability quality, security quality, suitability for stand-

ards and service level measurement quality. However, in contrast to the fully transparent service

development process in the case of a programming environment (prescriptive control), the plat-

form operator in the case of restrictive control only sees the outcome of the development process

and needs to verify malicious or erratic deviation from the communicated expected outcomes.

This approach carries the risk of missed deviations from the defined outcome within the phase of

restrictive control.

Restrictive control also applies on external services, which are requested by services deployed

on the platform or on e-markets which federate external services e.g., Facebook through its Graph

API30. Such filtering limits susceptibility to errors and underperformance when calling external

services, as discussed in the context of prescriptive control. Also transactions within the platform

can be filtered through restrictive control.

30 http://developers.facebook.com/docs/reference/api/, retrieved 08.02.2013

Dynamic Network Notation Ulrich Scholten

 97

4.3.6 Market Regulative Control

Market regulative control categorizes control mechanisms which are fully driven by the ecosys-

tem and which are generated through explicit feedback. Market regulative control can address

service consumers (e.g., through ranking) as well as service providers (e.g., through recommen-

dation boxes). Its objective is to communicate information on service quality. The ecosystem

self-organizes when, in reciprocity, consumers adapt their consumption behavior and service

providers amend service quality. It is a self-regulatory process; the platform operator’s role re-

duces to the provider of the necessary infrastructure.

This self-organizing process represents a causal loop within the control area as well as into the

ecosystem. In the Stock and Flow Diagramming Notation in Figure 12, the causal loop within the

control area points from activity 1 back to the valve situated on the inflowing transaction inside

the control area. Figure 13 replaces this causal loop by a filled circle, sitting in the upper left cor-

ner of activity 1. The new visualization has two reasons: First it reduces the load of information

in the representation. The bold circle can accommodate all control mechanisms which act within

the activity. Second, the representation in the original Stock and Flow Diagramming notation is

irritating, as now value inflow does not come from the external source but is created inside.

The causal loop within the activity creates value in a self-regulatory way. It can add value incre-

mentally (e.g. through recommendation of services to consumers, as this increases trust). It is not

able to turn into a strong network effect. Although it may fulfill the necessary condition of ex-

ceeding the necessary threshold, the limited size of the stock activity does not satisfy the second

condition. A potential network effect would require a source of finite but large size.

Figure 13 depicts a second causal loop with an influence, pointing from activity 1 to an exter-

nal participant or participant group. Placed on this influence, the market regulative control mech-

anism can incite new participants to transfer value to the platform (e.g. to subscribe). In the case

where the ecosystem participant is a participant group, both conditions of a strong network effect

can be theoretically fulfilled.

Another possibility of applying market regulatory control is on influences, pointing from in-

ternal participants to external participants or participant groups. For example, collaborative feed-

back systems may enable participants to recommend or advise against a value or base value

contribution, provided by the participant.

B Solution Design

 98

Definition 75: Market regulative control is driven by participants. It gives explicit feedback to

consumers or service providers in the platform and / or in the ecosystem on value, offered in ac-

tivities or through participants. This causal loop incites a self-regulatory process.

In market-regulative control, service platforms make use of collaborative feedback systems,

which allow for the collection, distribution and aggregation of information about a participant’s

activities [128] or the performance of a service. They can address internal or external participants

and participant groups.

To create the best match of collaborative feedback systems with control modes, the chapter

reverts to Jøsang, Ismail et al.’s [82] categorization into collaborative sanctioning systems (repu-

tation systems) and collaborative filtering systems (recommender systems). Collaborative sanc-

tioning is undirected and incentivizing to individual users as they create a trust-basis for a service

decision. This subgroup of market regulative control mechanisms belongs to the control mode

‘self’ (Table 8), as all action is based on individual empowerment. Recommender systems serve

the tastes and preferences of specific communities [82]. These coalitions of individuals with

shared values fulfill the characteristics of the community control mode in Table 8. Whereas this

mode incentivizes the consumers, it can both sanction and incentivize service providers, depend-

ing on the feedback. Table 27 maps the two types of feedback systems with implementation

examples, retrieved from the surveys.

Table 27: Classification of collaborative feedback systems

Dynamic Network Notation Ulrich Scholten

 99

Recommender systems support the creation and evolution of observable communities of common

values and beliefs on the demand-side. Such systems allow the platform operator in subsequent

steps to separate monolithically modeled participant groups into several community-specific tar-

get groups, allowing for improved consumer management.

Guiding on and self-organizing around service consumption, reputation systems need to be

modeled on activity elements. Recommender systems may be modeled on influences to com-

municate the feedback to non-subscribed suitable target group. They may also be modeled on

activities, when they are intended to address subscribed participants. The feedback can be per-

sonalized, i.e. addressing a specific participant, potentially within a participant group. It can also

be designed as a general feedback to a participant group.

The platform operator also has the possibility to interconnect this self-regulatory process with

active service management, e.g., through the definition of a minimum consumer satisfaction level

per service within the platform service provisions. This allows concatenating sanctional control.

The typical phase of application for market regulative control is the operating phase.

The following functional design requirements result from the above. Market regulative control

shall be located exclusively in all influences and activities, within the control area. The mecha-

nism shall be set false by default. It may be activated by the modeler. Optionally, market regula-

tive control may provide a 2nd layer sub-categorization into recommender and reputation systems

(Table 28).

Table 28: Summary table of functional design requirements for market-regulative control

B Solution Design

 100

4.3.7 Informative Control

Informative control stimulates creativity in the ecosystem, targeting individuals or communities

and providing them with preprocessed information, e.g., on service requirements, preferences or

feedback on specific quality. It addresses the participants’ intrinsic motivation. Intrinsic motiva-

tion relates to activities done because the acting participants expects personal satisfaction out of a

specific activity [81]. The respective informative control mechanisms consequently need to high-

light opportunities or invitations to participate in activities, which are of personal satisfaction to

the consumer, e.g., selected social networks or user groups. In contrast to the contributions in

market regulative control, which are community-based, the platform operator manages informa-

tive control.

The mechanism’s goal is to incite a self-regulatory process of alignment in favor of the service

platform. Like market regulative control, it is located on activities and influences pointing from

the control area into the platform ecosystem. Information addressed to unspecific target groups

could be e.g., the availability of new services, specific to the target groups’ expected require-

ments. Information addressed to specific subscribed users could be e.g., information of insuffi-

ciently serviced consumer requirements, which are close to the service provider’s subject area. In

that case, it acts within an activity. Informative control operates in the control mode self and

builds on the individual empowerment of a participant (Table 8). It can be applied in all phases of

the service management cycle.

Definition 76: In informative control the platform operator preprocesses information and ad-

dresses it to existing or potential participants or participant groups. The analyses are customized

on the addressed participants or participant groups and have the goal to incite a self-regulatory

process among them.

Being in a position of monitoring, the platform operator has the means to aggregate infor-

mation and to customize it to a specific service provider’s or consumer’s requirement. The ser-

vice provider has two possibilities of collecting feedback on consumer requirements, explicit and

implicit feedback. Placed on activities, informative control addresses and supports existing partic-

ipants in the activity. For example, participants can gradually strengthen the impact of the activi-

ty, e.g., through more focused quality of service, which they improve through feedback. In the

equation on network attractiveness (equation 3.18), this would enhance sensitivity. Placed on an

influence, informative control addresses external participants. E.g., potential customers can be

intrinsically motivated through the available information on existing services. Informative control

improves network attractiveness through improved sensitivity (equation 3.18). Ways to com-

municate information to specific target groups are outside the focus of this research project.

Dynamic Network Notation Ulrich Scholten

 101

For further reading in the discipline of marketing communications, please refer to e.g., Smith and

Zook (2011) or (Ries 2011).

The following functional design requirements result from the above. Informative control shall

be located exclusively in all influences and activities, within the control area. The mechanism

shall be set false by default. It may be activated by the modeler (Table 29).

Table 29: Summary table of functional design requirements for informative control

4.3.8 Motivational Control

The platform operator has the possibility to incentivize desired activities. Motivational control

means those mechanisms which set explicit incentives and potentially reward participants. Moti-

vational control is placed on influence edges, pointing at participants or participant groups in the

ecosystem.

Definition 77: Motivational control aims at steering ecosystem participants towards the

accomplishment of specific outcomes through rewards.

Motivational control can be triggered through monetary or non-monetary rewards. An exam-

ple for monetary rewards would be seed funding for specific participants. Examples for non-

monetary motivation would be free-of charge or cost reduced subscription periods, free storage

space. Placed on Activities, motivational control addresses existing participants in the activity.

For example, the platform operator can financially motivate existing participants to produce ser-

vices which are of strategic relevance to the platform in a certain segment, e.g., finance. In the

equation on network attractiveness (equation 3.18), this would enhance sensitivity to target

groups with specific interest in financial services. Placed on an influence, informative control

addresses external participants. E.g., the backup service Dropbox motivates subscribed consum-

ers to invite new participants through offering additional storage space. In that case, new partici-

pants are not attracted through network attractiveness but through increased trust, created through

a player from his community. This increase of trust improves attractiveness (equation 3.16) and

B Solution Design

 102

enforces network effect R1 in Figure 8. The disadvantage of motivational control as compared to

informative control is that it is not resource neutral.

The functional design requirements resulting from the above are as follows. Prescriptive con-

trol shall be located exclusively in all influences and activities, within the control area. The

mechanism shall be set false by default. It may be activated by the modeler (Table 30).

Table 30: Summary table of functional design requirements for motivational control

Dynamic Network Notation Ulrich Scholten

 103

5 Dyno - Model and Notation

This Chapter describes the engineering of the graphical modeling language Dyno. Its grammar

embraces all conceptualizations presented in Chapter 4. In explicit, it integrates all structural and

process elements, as well as the introduced control mechanisms. The artifacts defined in this

Chapter are located on level M2 of the model stack, with concrete models from level M0 (Table

31). For the sake of clarity, the Chapter describes Dyno’s abstract morphology and semantics

together.

Table 31: Model stack including Dyno Meta-Model

After defining aspects of norms, scope and conformance to the language (Section 5.1), the

Chapter continues with Dyno’s abstract morphology and semantics (Section 5.2) and syntax

(5.3), followed by a modeling scenario (Section 5.4). Extending the overall scope of the graphical

modeling language, Section 5.5 introduces a pattern language and repository, which enables

modeling, based on reusable building blocks. The Chapter closes with a guide on how to apply

the Dynamic Network Notation (Section 5.6).

5.1 Precepts

To allow for a language implementation in compliance with the subsequent specifications, the

following 3 sub-sections stipulate the norms, applied in the specification, the scope of language

design and the limits of conformance, when implementing the language.

5.1.1 Norms

The language specification in the following Chapters references the following normative, dat-

ed documents. Those documents as at the specified date are therefore provisions to the Dyno

B Solution Design

 104

language and editor specifications. In the remainder, the text does not further explicitly reference

these documents:

 OMG Unified Modeling language, v.2.0 for meta modeling and meta meta modeling

[104];

 OMG Object Constraint language, v.2.3.1 [129] for meta modeling;

IEFT request for comment document RFC2119 on key words must, must not, required, shall,

shall not, should, should not, recommended, may and optional [126]. Using these key words for

language specification, the remainder of the Chapter deliberately uses a prescriptive voice;

5.1.2 Scope

The Dynamic Network Notation focuses on essential aspects of the platform design process. It

provides a language and process support to platform architects and solution managers in order to

model a platform’s surrounding business ecosystem (e.g., service providers, consumers, competi-

tors) and to model suitable structures and control mechanisms in order to harness the platform’s

network effects. It further allows the evaluation of design alternatives. In this context, the present

work understands service management as managing the whole service life-cycle on an operation-

al level, including the service strategy, service design, service transition, service operation and

continual service improvement [130]. It explicitly includes the management of service provision-

ing and consumption. The scope is purely at the executive level and does not include board relat-

ed governance task such as corporate strategy formulation.

The scope further includes a service platform pattern langauge providing a common vocabu-

lary for platform architects and solution managers to communicate and document concepts as

well as to explore management alternatives and which serves as a reusable base of expertise

through solutions retrieved from experience.

5.1.3 Conformance

To reach compliance, implementations of the Dynamic Network Notation shall follow abstract

morphology and syntax exactly as defined in the Sections 5.2 and 5.3. As explicitly permitted by

the meta-model, a compliant implementation of Dyno may include additional properties that are

specific to certain modelers’ needs or intentions. The semantics of Dyno must be fully followed;

however it could be extended through additional properties.

The present work does not prescribe any concrete morphology or syntax and leaves the choice

of the modeling environment open to the implementer. Also, analytics features on top of the Dy-

no logic are purely optional. The pattern language and repository, introduced in Section 5.5 is

Dynamic Network Notation Ulrich Scholten

 105

also not part of the core Dyno specification but may be implemented as a supportive mechanism

for enhanced modeling effectiveness.

5.2 Abstract Morphology and Semantics

This Section introduces representation of all Dyno elements together with their semantic annota-

tion. The Section starts off with an explanation of the visualization concepts used in Dyno (Sub-

section 5.2.1). It continues with a specification of the areas of staged stakeholding power (Sub-

sections 5.2.2 - 5.2.5). Thereafter, the Section specifies nodes (Subsections 5.2.6 and 5.2.7) as

well as edges (Subsesctions 5.2.8 - 5.2.10). The Section closes with the specification of control

mechanisms (5.2.11).

5.2.1 Design Concepts

The language aims to serve its target users, solution managers and platform architects, following

the Definition 12 and Definition 13 in Subsection 19. It shall provide support when conceiving

platform-arrangements and ecosystems. At the same time it shall create a point of departure for

implementation or modification of a technical platform design. For the sake of effectiveness and

given the different background of the addressed users, graphical presentation needs to be equally

intuitive for users with a business background, who are traditionally familiar with flow-chart-

oriented formats and for users with an IT background, acquainted to modeling languages like

UML or Graphs. The BPMN symbolism provides an intersection, being used by both target

groups. Dyno’s symbolism is therefore close to the BPMN 2.0 conversation elements, i.e. the

symbols for Participants, Activities and Gateways (see next Section). Alternatives of language

design would have been a stereotype-based UML extension or a language definition based on

activity diagrams. Several aspects advocate the chosen solution. First decision factor is the fa-

vored proximity to the BPMN representation. Second, the required inclusion of both structural

aspects (areas, control mechanisms) as well as behavioral aspects (influences, transactions, loops)

excludes the choice of UML; UML exclusively allows either the one or the other approach.

Dyno shall allow insight with respect to visualization, communication and decision making. It

also has a dimension of explanation. However, as opposed to quantitative modeling in explanato-

ry models, explanation is restricted to the who and what, without investigating on how many.

Quantitative modeling would neither be possible nor useful as seen in Chapter 6: first, much of

the information required for modeling is not available; second, due to the exponential behavior of

network attractiveness, small mistakes in the basic assumption may lead to erratic results.

B Solution Design

 106

Dyno is conceived in a focused way on domain sets and functional properties related to service

platforms, their ecosystem and the respective network effects. This orientation and limitation

promotes expressiveness.

Complex requirements on modeling network and control features as pointed out in the previ-

ous Chapter advocate the choice of a graphical language. The proper use of graphical visualiza-

tion allows for amplified cognition of the above described relations and structural properties

through visual data representation and hence improves effectiveness of the language.

Dyno’s visualization is based on Card, Mackinlay et al.’s [131] six axes of cognition amplifi-

cation:

Increasing the user’s memory and processing

From a psychological perspective, visualization can help exceed the user’s intake capacity

through the brain’s capacity of parallel perceptual processing of visual attributes as well as the

offloading from the cognitive to the perceptual system. This feature however is immanent to

graphical representation in general and not specific to the Dynamic Network Notation.

Reduction of search effort for information

The Dyno-grammar gives guidance in producing the right information in the right moment

through its context specific representation of symbols, reinforced by the blinding out or deactiva-

tion of unsuitable properties. In consequence, the user receives customized information for each

specific modeling step. Grouping and visually relating information in graphical blocks reduces

search.

Enhanced detectability of patterns

Simplified visualization and selective omission of data allows the creation of an enhanced over-

view perspective about the situation on network effects. In particular the domain-specific nature

of Dyno allows for all data, which does not contribute to the target of depicting network effects

around service platforms to be omitted from the domain set. To allow for additional user support,

the underlying grammar allows for graph-theoretical analysis, when implemented in an editor.

Enablement of perceptual inference operations

Perceptual inference is the human’s capability to infer something based on a visual stimulus. Due

to its focus on network effects, Dyno choses network representation for making loops or potential

for loops obvious. However, networks are weaker in expressing hierarchies than tree structures

Dynamic Network Notation Ulrich Scholten

 107

[14], e.g., feature modeling. The requirement elicitation highlights that hierarchal relations play

an important role, i.e. the gradation of stakeholding power depending on location of a vertex or

an edge. As a work-around, the Dynamic Network Notation needs to enhance perceptual infer-

ence graphically:

 Centering the strongest area of staged authority (control area) and positioning the areas

of staged stakeholding power around.

 Circles symbolize buttons, representing control mechanisms and highlighting points of

manipulation. An activated control mechanism is filled black, inactivated mechanisms

remain white.

 The infinity symbol depicts the property of scalability.

 Line type (continuous or dotted line), line width and degree of color (black, levels of

grey) reflect an order of importance.

Using perceptual monitoring

The Dyno syntax enforces specific changes in representation based on spatial movement of ele-

ments. E.g., graphically displayed control mechanisms disappear once a participant is dragged

from the control area to the influence area. The operator perceives the change while moving ob-

jects and draws conclusions.

Manipulatable Medium

The models created with Dyno allow exploration and analysis and modification of user opera-

tions.

To better express the morphology of a language, Bertin [106] suggests a vocabulary describ-

ing the techniques to graphically encode information:

(a) Marks: points, lines, areas

(b) Positional techniques: 1-D, 2-D, 3-D. Dyno provides a 2-D spacial visualization, which

allow to schematize structural allocation of elements within the areas of staged stakehold-

ing power. The Dyno specification requests a third dimension to display properties per

one element, activated through mouse-click. The specification leaves the designer of the

modeling environment at liberty as to whether to place this third dimension into a drop-

down menu next to the active element or into a configuration panel. The specification

limits the display of attributes per element to avoid information overflow and to enforce

focused analysis.

(c) Temporal technique: animation. The specification requests mandatory dynamic adapta-

tion of elements, when being moved around by the modeler. For example the

B Solution Design

 108

controllable - circle disappears, when the modeler moves the participant from the control

area to the influence area. The modeler receives a visual stimulus. The participant group

bounces back, when the modeler tries to move it from the influence area into the control

area. This dynamic effect communicates the exclusion of this operation.

(d) Retinal techniques: Color, shape, size, saturation, texture. Dyno choses a shape set which

is familiar to those modelers, which are experienced with BPMN. It further gives the

modeler scope of freedom to color elements. For example, he could model more im-

portant base values in a different color than the less important ones.

During the design of morphology in the remainder of the Chapter, the text uses these terms

and comments on the applied graphical encoding.

5.2.2 Control Area

Semantics

The Control Area defines the space, where the platform operator can exert full control over all

participants, over all their own infrastructure and services and over third party service in the

frame of contractually agreed legal frame-set. The Control Area needs to be modeled within the

Influence Area.

Symbol description

The basic symbol shall be a rectangle with

 Background default color white RGB-code 255-255-255, Hex-code ffffff, the back-

ground color may be modified in a model as retinal technique for highlighting.

 Standard width: 740 pt, standard height 540 pt, may be resizable during the modeling

process as retinal technique for highlighting.

 Surrounding line: continuous, 2 pt, gray RGB-code 190-190-190, Hex-code #bebebe.

 Label: font orientation h: bottom, v: right, size 22 pt, color gray RGB-code 190-190-

190, Hex-code #bebebe, font type not defined.

 Non-true to scale example given in Figure 14.

Figure 14: Control area

Dynamic Network Notation Ulrich Scholten

 109

5.2.3 Influence Area

Semantics

The Influence Area delineates the space around the Control Area, where the platform operator

can exert degrees of influence on participants. This area is out of scope for control activities. The

Influence Area needs to be modeled within the Noise Area.

Symbol description

The basic symbol shall be a rectangle with

 Background default color white RGB-code 255-255-255, Hex-code ffffff, the back-

ground color may be modified in a model as retinal technique for highlighting.

 Standard width: 1000 pt, standard height 800 pt, may be resizable during the modeling

process as retinal technique for highlighting.

 Surrounding line: dashed, 2 pt, gray RGB-code 190-190-190, Hex-code #bebebe.

 Label: font orientation h: bottom, v: right, size 22 pt, color gray RGB-code 190-190-

190, Hex-code #bebebe, font type not defined.

 Non-true to scale example given in Figure 15.

Comments: none

Figure 15: Influence area

B Solution Design

 110

5.2.4 Noise Area

Semantics

The Noise Area describes the zone, where the platform operator has no influence. With the con-

secutive areas (Influence Area, Control Area) it forms an ordinal order of graded controllability,

where Influence Area is positioned at the medium and Control Area at the highest rank.

Symbol description

The Noise Area does not have a representation. The basic canvas of the modeling environment

should be considered Noise Area.

Comments: none

5.2.5 Divisions

Semantics

Divisions help to divide the control area into structural units. That might be organizational units

or geographical units e.g., rented compute and storage resources on an Infrastructure-as-a-Service

or an own server, physically placed in a customer or partner location. When modeled by a con-

sortium, division may give additional means to differentiate between specific areas of responsi-

bility or ownership by specific partners (e.g., division of consortium member 1, division of con-

sortium member 2, …).

Divisions carry a scalability attribute. This property can be set to true for structural units (divi-

sions) within the control area, which are specially conceived for rapid scale behavior. As a Bool-

ean attribute, it can only serve as qualitative indicator, pointing the modeler’s attention through

retinal technique to specific areas, where he has to be explicitly considerate when designing the

technical environment. These scalable environments may be required by activities within loops.

Details may be textually formulated or referred to in form of document identification number or

hyperlink.

The explorative analysis encountered cases where platform operators create finite numbers of

control areas outside the platform’s domain. Examples are own servers placed at customer sites

(e.g., by S.Chand Edutech, the example is revisited in the evaluation), or controlled environments

with prescriptive rights to the platform operator placed as native applications on client PCs e.g.,

Google Drive [132]. Division groups allow the bundling of these groups without obliging the

modeler to quantify the number of applications placed.

Dynamic Network Notation Ulrich Scholten

 111

Symbol description

The basic symbol shall be a rectangle with

 Background default color white RGB-code 255-255-255, Hex-code ffffff, the back-

ground color may be modified in a model as retinal technique for highlighting.

 Standard width: 200 pt, standard height 750 pt, may be resizable during the modeling

process as retinal technique for highlighting.

 Surrounding line: continuous, 1 pt, gray RGB-code 190-190-190, Hex-code #bebebe.

 Label: font orientation h: bottom, v: right, size 22 pt, color gray RGB-code 190-190-

190, Hex-code #bebebe, font type not defined.

Conditionally visible properties:

 Scalability,

 Symbol for property: ‘∞’, font size16 pt, color gray RGB-code 190-190-190, Hex-

code #bebebe, font type not defined, position: top left corner of element.

Comments: none

Special version of the symbol: Division Groups

 Special Semantics: Dyno suggests the symbol ‘division group’ for the ease of group-

ing sets of many areas of similar nature (e.g., remote virtual servers at customer loca-

tion).

 Deviating representation: Division Groups shall be depicted through 3 overlaid Divi-

sion symbols. In cases where scalability = true, the infinity symbol shall be placed on

the overhead Division symbol.

 Non-true to scale example given in Figure 16.

Figure 16: Division (displayed with Scalability-symbol) and Division Group

B Solution Design

 112

5.2.6 Participants

Semantics

Participants describe specific entities without stock behavior. They are considered static in short

term view. This does not rule out linear evolution (e.g., the entity service development hires new

personnel or/and develops new services). Platforms include the attribute base value.

A base value is placed on and can be set true for participants within the control area. Base Values

of a platform ecosystem are those values which the modeler considers to be valuable enough to

incite a network effect. Base values may vary during different modeling stages and depend on the

goal to be accomplished. A participant further carries the attribute controllable. If it is located in

the control area it is symbolized by a circle, depicted in the element’s representation. In that case

it can carry one or more control mechanisms of prescriptive control (Table 22). The controllabil-

ity of internal participants originates from their subordination to the platform operator. A partici-

pant within the control area can be internal entities like departments or workgroups, but also ex-

ternal suppliers which work on contractual assignment. Details may be textually formulated or

referred to in form of document identification number or hyperlink. A base value on a participant

may be required to start off a causal loop.

Symbol description

The basic symbol shall be a rounded rectangle with

 Background default color white RGB-code 255-255-255, Hex-code ffffff, the back-

ground color may be modified in a model as retinal technique for highlighting.

 Standard width: 150 pt, standard height 100 pt; may be resizable during the modeling

process as retinal technique for highlighting.

 Surrounding line: continuous, 1pt, black RGB-code 0-0-0, Hex-code #000000.

 Label: Font orientation h: middle, v: center, size 12 pt, color black RGB-code 0-0-0,

Hex-code #000000, and font type not defined.

Conditionally visible properties (depending on syntax):

 Base-value.

o When not activated, no base value symbol is visible.

o Symbol for property when activated: ‘ß’, font size16 pt, color RGB-code 0-0-

0, Hex-code #000000, font type not defined, and position: top right corner of

element.

 Controllability:

o Symbol for property: circle, stroke: black, 1pt, position: top left corner of the

element.

Dynamic Network Notation Ulrich Scholten

 113

o background color when no control mechanism activated: white RGB-code

255-255-255, Hex-code #ffffff;

o background color when one or more control mechanisms are activated: black

RGB-code 0-0-0, Hex-code #000000.

Comments

 Dyno adopts the participant symbol from BPMN Conversation, however with rounded

angles to create sufficient differentiation from the divisions.

Special version of the symbol: Participant Groups

 Deviating semantics: The participant groups do not address explicit entities but groups

of implicit nature with indistinct boundaries, e.g., group of users requiring a specific

service.

 Deviating representation: Participants groups shall be depicted through 3 overlaid Par-

ticipant symbols.

 Non-true to scale example given in Figure 17.

Figure 17: Participant representations.

Participant 1 (controllable, no control mechanism placed, base value activated);

Participant 2 (controllable, one or more control mechanisms placed, no base value);

Participant 3 (uncontrollable, therefore no option for base value);

Participant Group (uncontrollable, therefore no option for base value).

B Solution Design

 114

5.2.7 Activities

Semantics

Activities group sets of micro-activities e.g., service development, service consumption or service

deployment. Activities shall represent a stock that has accumulated in the past and which might

increase, stagnate or decrease in quantity in the future. As by definition, an activity can only take

place in the control area, the symbol mandatorily carries the circle in the upper left corner, as it is

always controllable. An activity can carry a finite number of control mechanisms of prescriptive

control, sanctional control, informative control and market –regulative control (Table 22). If one

or more of them are activated, the circle is filled. Activities also carry the attribute provisions to

describe or refer to applicable terms and conditions. This attribute however is not visible and

requires a modeling environment with the option to visualize it in the configuration panel or drop

down menu. Configuration panel or drop down menu represent a third dimension according to

Mackinlay [15].

Symbol description

The basic symbol is an equal-sided rectangle with

 Background default color white RGB-code 255-255-255, Hex-code ffffff.

 Background color may be variable during the modeling process as retinal technique

for highlighting.

 Surrounding line: continuous, 1pt, black RGB-code 0-0-0, Hex-code #000000.

 Standard width: 100 pt, standard height 100 pt; may be resizable during the modeling

process as retinal technique for highlighting importance.

 Label: Font orientation h: middle, v: center, size 12 pt, color black, font type not de-

fined.

Visible property:

 controllable

o symbol visible by default:

o symbol for property: circle, stroke: black, position: top left corner of the ele-

ment.

o background color when no control mechanism activated: white RGB-code

255-255-255, Hex-code #ffffff;

o background color when one or more control mechanisms are activated: black

RGB-code 0-0-0, Hex-code #000000.

Conditionally visible properties (depending on syntax):

 Base-value.

Dynamic Network Notation Ulrich Scholten

 115

o When not activated, no base value symbol is visible.

o Symbol for property when activated: ‘ß’, font size16 pt, color RGB-code 0-0-

0, Hex-code #000000, font type not defined, and position: top right corner of

element.

 Non-true to scale example given in Figure 18.

Comments

 To depict the ‘Activity’, Dyno adopts the communication symbol from BPMN conver-

sation.

 Figure 18: Activities;

Activity 1 (no control mechanism, no base value),

Activity 2 (one or more control mechanisms placed, on base value activated)

5.2.8 Transaction

Semantics

Transactions describe a flow of value, which is transferred

a) from a participant or participant-group to an activity or

b) from an activity to an activity or

c) from an activity to a participant inside the control area.

The options a) and b) describe typical flows in the sense of a migration, which accumulates a

stock. A transaction can theoretically be negative. This describes a drain. Option c) allows for the

modeling of directed process chains within the control area, e.g., when a participant retrieves

information. It is an auxiliary construct to increase the modelers’ scope of expression but is not

central to Dyno’s conception.

Transactions mandatorily carry the attribute ‘controllable’. It turns true if one or more restric-

tive control mechanisms are activated (Table 22). Transactions also carry the attribute provisions

to describe or refer to applicable terms and conditions. This attribute however is not visible and

requires a modeling environment with the option to visualize it in a third dimension the configu-

ration panel or drop down menu.

B Solution Design

 116

Symbol description

Transactions shall be displayed as arrows with a continuous line. The direction shall be indicated

at the target-side through a circle.

A transaction must be depicted with a label ‘Transaction’, first letter capital, all other letters

small. Similarly to the controlled elements, a circle is placed at the target side on the symbol.

Graphic features:

 Line: continuous, 1pt, black RGB-code 0-0-0, Hex-code #000000.

 Label: Font orientation should be sitting middle-out on the arrow, size 12 pt, color

black RGB-code 0-0-0, Hex-code #000000, font type not defined.

Visible property:

 Controllability:

o symbol for property: circle, stroke: black, 1pt, position: should be near the tar-

get of the arrow.

o background color when no control mechanism activated: white RGB-code

255-255-255, Hex-code #ffffff;

o background color when one or more control mechanisms are activated: black

RGB-code 0-0-0, Hex-code #000000.

 Non-true to scale example given in Figure 19.

Comments: none

Figure 19: Transaction (no control mechanism)

5.2.9 Influence

Semantics

Influences describe efforts of indirect control over participants or participant groups, located in

the influence area. From the business dynamics point of view, they correspond to rates, which

influence value flows i.e. transactions. Sources to influences can be activities, participants and

participant groups. To guide the modeler towards the design of causal loops, the language im-

plements the construct for directed edges. It only allows activities to directly influence participant

groups or participants. Participants or participant groups are allowed as part of a set of sources,

aggregated through a merging gateway. The modeler might circumvent the guiding mechanism

through concatenation of one or more influences pointing at a gateway, which addresses them to

Dynamic Network Notation Ulrich Scholten

 117

a participant group. Through the lack of activity, no causal loop can be created. Within a model-

ing environment, subsequent analysis could detect such inert constructions.

Influences carry a controllability attribute to display, whether or not they can be controlled.

The relevant Boolean status is defined by the location of the influences’ source. If the source of

an influence is located in the control area, the controllability attribute is true and the element car-

ries the circle depicting controllability. In such cases, the influence can carry a finite number of

control mechanisms of motivational control, informative control and market–regulative control

(Table 22). If one or more of them are activated, the circle is filled.

Symbol description

Relationships shall be displayed as arrows with a continuous line. The direction shall be indicated

at the target-side through a filled arrow head.

An influence must be depicted by the label ‘Influence’, first letter capital, all other letters

small. Similarly to the controlled elements, a screw head is placed at the source- or target side on

the edge, whenever the attribute controllability is set to the value ‘true’. Specific features:

 Line: continuous, 1pt, black RGB-code 0-0-0, Hex-code #000000.

 Label: Font orientation should be sitting middle-out on the arrow, size 12 pt, color

black RGB-code 0-0-0, Hex-code #000000, font type not defined.

Conditionally visible properties (depending on syntax):

 Controllability:

o symbol for property: circle, stroke: black, 1pt, position: should be near the

source or target of the arrow depending on the syntax;

o background color when no control mechanism activated: white RGB-code

255-255-255, Hex-code #ffffff;

o background color when one or more control mechanisms are activated: black

RGB-code 0-0-0, Hex-code #000000.

 Non-true to scale example given in Figure 20.

Comments: none

Figure 20: One uncontrollable Influence and a controllable Influence without control mechanism

B Solution Design

 118

5.2.10 Gateways

Semantics

A Gateway is a synchronizing merge gate, awaiting all incoming edges to complete before trig-

gering one or more outgoing edges.

Symbol description

Gateways shall be represented by the diamond symbol with an included ‘+’sign. Details:

 Standard width: 50 pt, standard height 50 pt; may be resizable during the modeling

process as retinal technique for highlighting.

 Surrounding line: continuous, 1pt, black RGB-code 0-0-0, Hex-code #000000.

 ‘Plus’ symbol centered within the diamond, height and width approx.36 pt, line: 3 pt.

 No labeling, no resizing.

 Non-true to scale example given in Figure 21.

Comments

Dyno uses the merging gateway symbol from BPMN 2.0.

Figure 21: Gateway

Dynamic Network Notation Ulrich Scholten

 119

5.2.11 Protagonist Control

Dyno models from a specific protagonist’s view point. A complete Dyno model with Participants,

Activities and Relationships shall be interpreted as control center for the protagonist. For the sake

of clarity, Dyno represents control mechanisms as aggregated control points, displayed through

one only circle. In an editor, configuration panels or drop down menus shall display the configu-

rable attributes. The following list describes the included attributes, which are based on Chapter 4

(Table 3 and Table 5).

Control Mechanisms

 Prescriptive control is the mechanism to control participants and activities inside the

control area. Prescriptive control means that the platform operator can fully prescribe

the steps to take in activities and participants on the platform. Details and related pro-

visions may be textually described or referred to in form of document identification

number or hyperlink.

 Restrictive control is the mechanism to control inbound transactions from third parties.

Third parties may be e.g., customers, suppliers. Restriction may be based e.g., on

compliance level of an inbound transaction to the platform provisions. Details and re-

lated provisions may be textually described or referred to in form of document identi-

fication number or hyperlink.

 Sanctional control incites an escalation routine at any time an activity exhibits a cer-

tain level of incompliance to policy or regulations of the platform operator. Details and

related provisions may be textually described or referred to in form of document iden-

tification number or hyperlink.

 Motivational control groups all incentivizing activities towards Participants within the

Control Area. Details may be textually described or referred to in form of document

identification number or hyperlink.

 Informative control gives the suppliers (customized) information on consumer prefer-

ences, requirements, etc. and aims at supporting the platform operator towards an op-

timization of his services and eventually of the whole service portfolio. Details may be

textually described or referred to in form of document identification number or hyper-

link.

 Market-regulative control uses feedback from consumers to exert control (i.e. through

reputation and recommender systems). Details may be textually described or referred

to in form of document identification number or hyperlink.

B Solution Design

 120

5.3 Abstract Syntax

Following Definition 42, abstract syntax gives a high level definition of syntax, leaving out par-

ticularities to technical implementation, but precise enough to describe representation of and pro-

duction rules for actual utterances (i.e. of graphical models). It builds on the functional design

specifications, derived from the conceptual model in Chapter 4. It complements those with speci-

fications, originating from theory of language engineering (Section 3.1) and as well as from theo-

retical design concepts as described in Subsection 5.2.1.

The present work uses UML as a meta-language to display the abstract syntax’ assembly rules

conforming to the model stack of Chapter subsection 3.1.3. According to Definition 27, syntax

needs to additionally prescribe the adaptation of graphic representation in function of specific

conditions, e.g., the case-dependent representation of the control points on nodes and edges.

Therefore, OCL complements UML to prescribe adaptation of graphical representation in design

time and in function of the context specific syntactical requirements.

In the UML meta-model (Figure 22) classes give the meta-view on the elements nodes and

edges, related and conjugated through production rules. The classes encapsulate characteristics,

immanent to those elements as attributes. Some attributes define basic properties immanent to

every element i.e. identification number (id), name and documentation. There are further attrib-

utes, which are only carried by specific elements, i.e., base-value, controllable, controlla-

bleSource, controllableTarget, scalability, location and provisions. An important property to a

subset of nodes and edges in the context of service management are the control mechanisms, i.e.

prescriptive control, sanctional control, restrictive control, informative control, market regula-

tive control and motivational control. The meta-model depicts the control mechanisms not as

properties but as classes. Subsection 8.3.6 (Control Mechanisms) details the chosen solution.

Considering the meta-model without the ExtensionAttribute-Class, it designs a regular gram-

mar compliant to Definition 33. In a regular grammar, terminals on the right side produce a single

terminal on the left side, e.g., A→wB. However, the Extension Attribute is nested in the root

element (and may hence be called up recursively). This makes the grammar context-free, accord-

ing to Definition 32. In a context-free grammar, terminals and non-terminals on the right side

produce a single non-terminal on the left side, e.g., A→wAB.

The following subsections detail important parts of the meta-model. For better clarity, the sub-

sections revisit only selected fractions of the overall meta-model (Figure 22). Subsection 5.3.1

starts with an introduction to root element and the core meta-model. Subsection 5.3.2 introduces

edges and nodes and their relationship in detail. Subsection 5.3.3 explains how the meta-model

handles control mechanisms.

Dynamic Network Notation Ulrich Scholten

 121

Following the conventions applied by [133], the present work begins class names with a upper

case and attributes with a smaller lower case letter. OCL conditions under a class name describe

conditions for a class instantiation. E.g., Division {{OCL} self.location = controlArea} describes

that necessary condition for a division is that its location is within the control area. OCL condi-

tions stated behind an attribute describe conditions for an attribute to appear. E.g., controllable:

Boolean {{OCL} self.location = controlArea} defines that an element only carries this attribute, if

it is located within the control area.

When speaking of classes of the meta-model, the present work uses this differentiation of up-

per case and lower case. When speaking about the actual (instantiated) elements in the context of

models, the text refers to those purely in lower case.

Figure 22: Complete Dyno meta-model

B Solution Design

 122

5.3.1 Root Element and Core Meta-Model

All elements in the Dyno meta-model apart from the enumeration Location inherit their basic

features from the abstract class RootElement (Figure 23). Apart from the RootElement, the meta-

model has 3 more important abstract classes, all inheriting from the RootElement: the abstract-

Node as generalization of all nodes in the meta-model, the abstractEdge, generalizing all edges

and the ProtagonistControl class, generalizing all control mechanisms and representing the con-

trol center.

Figure 23: Root Element and Core meta-model

Dynamic Network Notation Ulrich Scholten

 123

Only the element name should be represented in the element in the case of a node. The modeling

environment shall allow for the documentation string to be edited in a third dimension. The ele-

ment identification number does not need to be displayed, if the modeling environment assigns

and handles them automatically. The edges by default depict their character Transaction or Influ-

ence. The modeling environment can give the modeler the freedom to change these default names

to customized ones.

In analogy to the BPMN meta-model [102], the Dyno meta-model is equipped with an exten-

sion attribute. The Dyno language provides core grammar and semantics to model networks in an

around service platforms with particular focus on control. However, in cases of different or

broader problem statements, there might be other features, which merit consideration, e.g., moni-

toring mechanisms or security mechanisms. The root element extension attribute allows them to

be added as properties without violation of the Dyno specification. At the same time it prescribes

how to add additional properties without damaging Dyno’s grammar. However, including addi-

tional properties through the ExtensionAttribute-class risks producing semantic incorrectness.

Producing semantically correct extensions to Dyno lies solely in the accountability of the lan-

guage engineer. The meta-model rules out the inclusion of additional classes, as those might de-

stroy the correctness of the Dyno Models.

B Solution Design

 124

5.3.2 Nodes and Edges

Figure 24 describes the main nodes and edges in the Dyno meta-model. Main nodes are the clas-

ses Participant and Edges. They are specializations of the superclass abstractNode. Main edges

are Influence and Transaction, inheriting from the parent class abstractEdge.

To be able to differentiate between source and target of an edge, the meta-model subsets

relatedControlElement into source and target. RelatedControlElement forms the union of both as

no other associations between abstractNode and abstractEdge shall be allowed.

Figure 24: Core nodes and edges

Dynamic Network Notation Ulrich Scholten

 125

Nodes

Figure 25 isolates the nodes from the meta-model. In addition to Activity and Participant, the

superclass AbstractNode shall be specified into ParticipantGroup and Gateway. Participant-

Group is an aggregation of [2..*] participants which shall all be based in the same area. An OCL

constraint specifies this through

{{OCL}self.location → forAll {Participant.location = self.location}

{{OCL} self.location → forAll {Activity.location = self.location}

Through the AbstractNode, all children shall inherit the attribute location which refers to an

enumeration of the location properties controlArea, influenceArea and noiseArea (Figure 25).

Through an OCL-based restriction of the property controllable to the controlArea, the syntax

shall ensure that the controllability symbol only appears when the respective node is located

within the control area:

 controllable: Boolean {{OCL} self.location = controlArea}

The gateway shall be a synchronizing merging gate. As specified by the OCL constraint with-

in the AbstractNode, a gateway must never be controllable. An additional OCL constraint re-

stricts all activities to the control area. This follows the understanding that cooperation outside

the control area can only be viewed as a black box activity within an external participant. For

example, a platform operator cannot observe the loose coupling of services from the service pro-

vider. He can only observe the behavior of the resulting composite service, when it is called up

by a requesting service that is deployed on the platform.

All activities can refer to defined service platform provisions. Provisions therefore are an at-

tribute of the class Activity. Control mechanisms regulate the potential enforcement of these pro-

visions.

B Solution Design

 126

Figure 25: Nodes

Division and division group shall be modeled as structuring element within the boundaries of

the control area (Figure 26). They shall not hold any logic. Division and division group possess

the Boolean property ‘scalability’.

Figure 26: Location and divisions

Control area, influence area and noise area are modeled as an enumeration. In a modeling en-

vironment, they could allow for documentation in a third dimension. Also it is permitted to edit

the area names.

Dynamic Network Notation Ulrich Scholten

 127

Edges

As discussed on various occasions throughout the present work, the Dynamic Network Notation

offers remains purely qualitative. Reasons for this are the unavailability of reliable market data

and the danger of wrong conclusions based on slightly varying data, due to exponential behavior

of equation 3.20, describing the causal loops. In consequence, the edges in Dyno do not carry any

weighting.

Figure 27 shows the AbstractEdge with its two specializations, Influence and Transaction.

Similar to controllability of nodes, controllability of edges shall be restricted to the control area

for sources as well as for targets of edges:

controllableSource: Boolean {{OCL} self.source.location = controlArea}

controllableTarget: Boolean {{OCL} self.target.location = controlArea}

Figure 27: Definition of edges

Influence and Transaction relate to each other through a logical exclusive-or disjunction. This

facilitates subsequent realization in concrete syntax through an editor. The editor only needs to

provision one single super-edge, embracing Influence and Transaction. In design time, the editor

can then verify based on the concrete grammar, whether the representation shall be an Influence

or a Transaction.

OCL constraints the Influence to targeting the influence area through the expression

{{OCL} self.target.location = influenceArea; …}.

Similarly it constraints the Transaction to point into the control area:

{{OCL} self.target.location = controlArea; …}

The Transaction must in addition not originate within the noiseArea to rule out malicious val-

ue transfers:

{{OCL} …; self.source.location → excludes(noiseArea); …}

B Solution Design

 128

Also it makes semantically no sense to allow for aggregation of transactions outside the con-

trolArea as the origin would be hidden to the platform operator. Therefore OCL constraints

apply:

{{OCL} …; self.source → excludes(Gateway)}

Given the fact that participants do not accumulate (in contrast to activities), they could only be

a side path in a causal loop. The grammar therefore rules out that participants alone influence

participant groups in the influence area and direct them via a merging gateway.

{{OCL} …; (self.source = Participant) -> implies (self.target = Gateway)}

In a modeling environment, an analyzer should subsequently verify the involvement of an ac-

tivity in loops. All transactions can refer to defined service platform provisions. Provisions there-

fore are an attribute of the class Transaction. Control mechanisms regulate the potential enforce-

ment of these provisions.

5.3.3 Control Mechanisms

The UML meta-model depicts all control mechanisms as independent classes, although they

could have been defined as attribute of type string to an element. The chosen approach is justified

through several reasons. First, it expresses the control mechanisms belonging to the control center

ProtagonistControl in the meta-model. Protagonist control is a generalization to all control

mechanisms. Second, this approach emphasizes the fact that specific control mechanisms can be

aggregated by several elements. Third, it gives the language the possibility to mature over the

next releases. The control mechanisms are key to the Dynamic Network Notation. The isolated

modeling allows language engineers to evolve them over time, e.g., through specific new proper-

ties, dependencies or association relationships (e.g., aggregations or compositions). For example,

a subsequent release of the Dyno specification could equip market-regulative control with the

options reputation system and recommender system, potentially regulated through constraints,

specified in OCL. Another option would be to continuously add all emerging elements of rec-

ommender and reputation systems in the market to the modeling language.

AbstractNode (Figure 25) and AbstractEdge (Figure 27) limit controllability to those (parts of)

elements which are within the control area. Table 22 prescribes the options which Dyno shall

give to the modeller. The availability of such a control option must be limited to nodes and

Sections of edges within the Control Area. Figure 28 describes the subset of the production rules

related with control mechanisms.

Dynamic Network Notation Ulrich Scholten

 129

Figure 28: Nodes and Edges (those parts within the control area) and their suitable control mechanisms

Critical reflections on the control configuration

The case-sensitive allocation of control limits internal participants to prescriptive control involv-

ing a very narrow scope of freedom. For some corporate management concepts or even for some

contexts this limitation of scope of freedom may be too strict.

However, the way it has been conceived gives the modeler choice. He may place those partic-

ipants with limited scope of freedom (e.g., those in charge of core platform services) into the

control area. On the other hand he may place position participants in charge of independent ser-

vices outside the control area, giving them the management status of an independent unit with the

implication of reduced stakeholding power, but with the potential of higher creativity. In such

cases, control would occur on the corporate governance level through the setting of strategic tar-

gets for those independent entities. Such governance implications are outside the scope of Dyno.

The next section gives an example for this differentiation.

B Solution Design

 130

5.4 Modeling Scenario in Dyno

This Section revisits and models several growth phases of Salesforce’s service platform to illus-

trate Dyno. More models are to follow in the section on service platform patterns, giving addi-

tional examples of its reusable nature (Section 5.5.2). The pattern section reverts i.e. to demand-

sided network effects as applied by Trello. It further models approaches of finite quantities of

divisions at customer locations, as done e.g., by Dropbox, Google Plus or S.Chand Edutech.

Figure 12 describes four phases of growth of the service platform operator Salesforce. Figure

29, Figure 30, Figure 31 and Figure 32 model the different phases based on Dyno. The models do

not claim to be exhaustive, but aim at providing familiarization with Dyno. The sequence starts

with the launch phase and then depicts the different points of departure to growth phases II to III.

Launch Phase and Growth Phase I

Salesforce started off with proprietary software, offered as a service. Figure 29 depicts internal

participants and activities on the platform within the borders of the control area. The reachable

target group is located within the influence area, the competitors in the noise area. The model

represents the internal service department, which is in charge of developing the CRM software,

as participant.

Figure 29: Salesforce, Launch phase, screenshot from Dyno-Editor

Dynamic Network Notation Ulrich Scholten

 131

The internal participant is subordinate to the platform operator’s authority. Therefore, the partici-

pant carries the symbol of a filled circle (controlled). The configuration panel of an editor would

show that the platform exerts prescriptive control. As the CRM- team is the source of

Salesforce’s base value, it carries the β-symbol. Theoretically, the modeler could as well place

the β-symbol into the activity deployed. Allocating the symbol into the participant emphasizes

that the CRM-based base value does not grow through loops (in contrast to the activities in

growth phases I to III). Putting the β-symbol into the activity shows, that deployment of new ser-

vices is an ongoing activity of the participant, gradually filling the activity.

The activity deployed also indicates that it is controlled. Here, the platform exerts prescriptive

control. It is able to modify software, e.g., to adapt it to new hardware. The deployed CRM soft-

ware exerts attractiveness on the target consumer group, depicted by an influence. The platform

operator enforces this attractiveness through informative control, which communicates infor-

mation on available services to the addressed consumer group. The operator does not close any

causal loop from the target group to the activity deployed. The model carries no network effect

yet.

After a certain growth time, the activity subscribed accumulates an amount of subscriptions,

which allows the model to be updated and to assign this activity with an additional base-value

symbol (Figure 30). Figure 12 described this as growth phase I.

Figure 30: Salesforce, growth phase 1, fraction of screenshot from Dyno-Editor

However, a causal loop circles around the subscribed activity. The quantity of subscribed con-

sumers has scale effects on other consumers which may subscribe as well. Not including any

added functional value, the target group may have low sensitivity to the total number of users,

which is the accumulation of activity subscribed. Given this low sensitivity, even though the

number of subscribed users might exceed the threshold, the impact would remain small. The plat-

form operator communicates information on the numbers of inscribed users to enforce the effect.

Negative influences by competitors weaken the effect. In the model, the division operating envi-

ronment carries an ∞-symbol, indicating that the technical infrastructure is scalable and thus pre-

pared to network effects.

The base value CRM software, deployed as a service led to sufficient growth of the subscribed

customer base. This allowed Salesforce in 2006 to shift to Growth phase II.

B Solution Design

 132

Growth phase II

In growth phase II, Salesforce opens an ‘on-demand application sharing service’ for subscrib-

ers, partners and developers’31 (AppExchange). Figure 31 depicts the corresponding Dyno model.

The activity appex represents the e-market. The model positions the activity into a dedicated

scalable environment. By default, all subscribed participants get access to the e-market. Dyno

visualizes this through a transaction from the activity subscribed to subscribed to appex. The

model sets the base value attribute in subscribed to appex = true, as this activity is the basis to the

targeted causal loops.

Figure 31: Salesforce, growth phase 2, screenshot from Dyno-editor

31 http://web.archive.org/web/20060213075840/http://www.salesforce.com/appexchange/whatis_appexchange.jsp, retrieved

19.02.2013

Dynamic Network Notation Ulrich Scholten

 133

Salesforce provided a policy, specifying required information e.g., on application, functionality,

external services or on manageability32. They are located on the transactions from participants (on

activity subscribed to appex) as well as from partners (on activity subscribed partners) and point-

ing on deployed to appex. A restrictive control mechanism on both transactions represents the

compliance check. Partners as well as consumers can be unsubscribed through a sanctional con-

trol mechanism on their respective subscribed-activities. On the deployed to appex-activity, the

platform operator exerts sanctional control. Prescriptive control appears, due to the broad range

of service design alternatives difficult

The platform design shows a demand-sided and supply-sided causal loop. On the demand

side, consumers can provide solutions. The model depicts this through a transaction going from

subscribed to appex to deployed to appex. The more solutions the consumers provide, the more

attractive becomes the platform to potential consumers in the target consumer group.

The second loop is cross-sided. The more consumers subscribe, the more attractive becomes

the platform for partners to provide services. The more services are provided, the higher is the

attractiveness to new consumers to subscribe. The platform operator works with a series of mech-

anisms to support this. On the subscribed to appex activity, he applies market regulative control.

The consumers rate services to each other. He does not place any recommender system. On the

influence departing from the subscribed to appex activity, the platform operator uses informative

control to inform the target consumer group on the growing quantity of consumers. On the influ-

ence departing from the deployed to appex activity, the platform operator sends motivational con-

trol (granting free testing of services on the platform). On the same influence, the platform opera-

tor places informative control (information of the services applied). Through market regulative

control on the same influence, the platform operator communicates the service ratings aiming at

creating a situation of trust in the target group.

The major disadvantage in this design is the limitation of prescriptive control on the deployed

to appex activity and strong manual workload when testing the services during restrictive control

on the ingoing transaction. Both shortcomings are caused by the insufficient service manageabil-

ity quality due to broad scope of freedom in service design. Growth phase III compensates this

shortcoming.

32 Policy: http://web.archive.org/web/20060424014931/http://www.salesforce.com/appexchange/listingReqs_appexchange.jsp,

retrieved 19.02.2013

B Solution Design

 134

Growth phase III

In growth phase III, starting in 2008 (Figure 32), Salesforce enhances its limited programming

specification into a development and testing environment [134]. The whole division which han-

dles external services turns into a Platform-as-a-Service solution (Force.com). A developing

activity channels service design through prescriptive control into services of desired quality. Pre-

scribed manageability quality allows for observability and controllability. Prescribed business

process quality ensures collaborability. Suitability for standards allows for interoperability and

conformability. The enforced quality allows loose coupling of those third party services with the

CRM-as-a-service software. The consumer does the service configuration. To the platform opera-

tor, this implies an increased level of process automation with reduced requirement for human

interference.

In this platform design, the platform operator can exert far reaching prescriptive control in the

deployed to appex activity. This facility goes down to the level of technically modifying the ser-

vice. This enhances the scope to influence service level measurement quality.

The Salesforce example would allow more detailed degrees of modeling: i.e. details like the

testing environment Sandbox could have been added. Another fact worth modeling is

Salesforce’s contribution of services onto the two-sided market. The contributing team could be

modeled as an individual participant. The participant’s contribution of free of charge services

could be modeled as motivational control on the influence from the deployed to appex activity

into the ecosystem. In a more exhaustive model social networking applications such as chatter

could also be modeled, showing additional network effects. The example describes how the struc-

tured approach of the modeling language enables visualizing complex multi-level dependencies.

This evolutional example also shows that Dyno can help modeling platform evolution from vari-

ous starting points.

Dynamic Network Notation Ulrich Scholten

 135

Figure 32: Salesforce, growth phase 3, screenshot from Dyno-Editor

B Solution Design

 136

5.5 Pattern Language for Dyno

The present section introduces a pattern language for service platforms and a coordinated com-

munity driven process to create a sharable quality-managed knowledge repository. Pattern lan-

guage, process and repository are not part of the core Dyno language specification. They com-

plement the language for increased comfort and modeling effectiveness. The present work uses

the MoSaiC collaboration model [135] as underlying process model for a coordinated, communi-

ty-based development of a pattern repository. An early version to this language was published by

Scholten, Schuster et al. [44] and critically discussed at the 2012 5th IEEE International Confer-

ence on Service-Oriented Computing and Applications (SOCA).

Complementing the Dynamic Network Notation, platform service management patterns serve

as mechanisms for documenting and communicating knowledge about successful and failed ser-

vice management approaches around service platforms. Patterns in general help to “identify,

name and abstract common themes” [17] in design. Those patterns help making knowledge reus-

able by capturing the information and intent behind a design. Patterns are condensed descriptions

of the properties that succeeded in solving a specific problem. Platform service management pat-

terns provide a common vocabulary for platform architects and solution managers to communi-

cate and document concepts as well as to explore management alternatives and serve as reusable

base of expertise through solutions retrieved from experience. For example, the explorative anal-

ysis of a set of platform samples revealed several patterns for service deployment on a platform: a

free deployment approach, a programming-model-based deployment procedure and a program-

ming-environment based deployment procedure. The remainder of this chapter revisits the two

latter examples and embeds them in respective patterns and an anti-pattern.

The remainder of this subsection continues with a definition of service platform patterns (Sec-

tion 5.5.1). Then it exemplifies a series of basic patterns (Section 5.5.2). Aggregating experience

from many unconnected communities (e.g., researchers from different disciplines, professionals

from various market segments) and staying in phase with their progression over time requires

capturing patterns in an evolving manner. Therefore, the section closes with a collaborative man-

agement process suggesting a coordinated, community-based approach of creating and managing

a repository of service platform patterns (Section 5.5.3).

Dynamic Network Notation Ulrich Scholten

 137

5.5.1 Service Platform Patterns

The following definition of service platform patterns builds on terminology and concepts of pat-

tern languages [16] and design patterns [17]. In general a pattern is an “abstract problem-solution

pair, applicable for a specific environmental context” [136]. Plenty of pattern collections exist,

addressing various contexts and levels of application. Gamma, Helm et al. [17] structure idiomat-

ic class and object structures into design patterns, providing common vocabulary and constituting

“a reusable base of experience for building reusable software”. Workflow patterns as defined by

van der Aalst, ter Hofstede et al. [137] operate on a higher level of abstraction, describing condi-

tions, examples, problems and solutions in workflow style expressions. Platform service man-

agement patterns capture knowledge on best practices and experiences for controlling activities

and participants as well as harnessing network effects in a service network platform ecosystem.

Definition 78: Service platform patterns are structured descriptions of best practices for harness-

ing network effects in service platform ecosystems.

The pattern language consists of building blocks of structured descriptive text and Dyno-

utterances. The Dyno-utterances aggregate existing models from other patterns and elements in

compliance with Dyno’s abstract grammar, e.g., of the form A→ABw, where A and B are building

blocks and w are Dyno elements. Following Definition 32, the pattern language is context-free, as

it allows for nesting. Explicitly, it allows the production of an upgraded pattern A based on the

original pattern and extending patterns of Dyno elements. Figure 33 visualizes the corresponding

meta-model to the pattern language.

B Solution Design

 138

Figure 33: Meta-model to service platform patterns

A new service network pattern can include a multitude of identical, existing patterns. Existing

patterns can be included into many new patterns. One specific instance of one Dyno model how-

ever can only be part of one specific pattern. Patterns can include only one Dyno model, although

a Dyno model may be an utterance, embracing other Dyno models. The pattern language differ-

entiates between patterns, supplying best practice in specific applications (e.g., one-sided service

platform with network effect, platform with programming specification, platform with program-

ming environment) and anti-patterns, practices where market studies proved that they lead to

problems or underperformance (e.g., a Web service intermediary platform without base value

contribution).

Building on Gamma, Helm et al. [17], platform service management patterns follow a struc-

ture as described in Figure 34. Departing from Alexander, Ishikawa et al. [16], research commu-

nity around patterns [16, 136-138] calls the finite set of patterns constructible from a specific

pattern type a pattern language. The grammar is textual and reverts to the English language,

structured in a table of pairs of denominators and descriptions. The only exception is the diagram,

which is a graphical element (Dyno-model), embedded into the table.

Dynamic Network Notation Ulrich Scholten

 139

Pattern Id Unique pattern identifier.

Pattern Name Meaningful name of the pattern.

Version Version number.

Date Date of the current release

Authors
The authors that contributed to the pattern, followed by the release version in brack-

ets.

Status Under revision / released.

Pattern Type Pattern or anti-pattern.

Intent Description of the addressed service network management problem.

Applicability Description of the contexts where the pattern can be applied including preconditions.

Solution Detailed description of the pattern, its accomplishment, limitations, etc.

Diagram Graphical representation of the pattern.

Frequent Features Detailed description of functionalities that are often, but not always applied.

Consequences Description of pros, cons, and limitations.

Sources

If code for parts or all of a pattern can be downloaded at a URL, this URL is included

here, accompanied by additional information e.g., license information and deployment

guides.

Examples
Real life examples described through company name, potentially through additional

information,

Included Patters

Cross reference to included patterns described through pattern name and [pattern Id].

If the included pattern is a composite solutions, its sub-patterns do not need to be

listed explicitly.

Related Patterns
Cross reference to closely related patterns described through [pattern name] ([pattern

Id])

Figure 34: Structure of service platform patterns

The heading segments pattern id, pattern name, version, date (of last revision) and authors

shall allow for distinct pattern identification. The cell authors denominates the author(s) of initial

or revised version, complemented by the version number of respective involvement. Status shall

show whether there is any limitation in usage due to revision or blocking. Pattern type should

indicate, whether the depicted pattern is exemplary best practice or an illustration of solution that

is likely to fail. Intent and applicability should describe the addressed problem and the context.

B Solution Design

 140

The detailed description of the pattern solution should be followed by a diagram providing the

graphical representation. Frequently used but not always applied features may be listed in fre-

quent features. Hereafter, consequences gives space for optional discussion of advantages and

disadvantages of the pattern. Sources allows for the display of links to available code, examples

describes real-life examples. The pattern structure shall close with a list of included and related

patterns. The template may be extended through the community.

5.5.2 Pattern Drafts

This subsection gives examples of representative patterns. The first 3 patterns exemplify basic

building blocks. Pattern 4 is a representative anti-pattern. Pattern 5 is composite patterns which

embeds two basic patterns. Pattern 6 includes pattern 3 and pattern 5. The patterns are drafts as

they are under revision and not yet released.

Dynamic Network Notation Ulrich Scholten

 141

Platform subscription pattern draft

All analyzed platforms respond to the following subscription patterns.

Pattern Id 00001.0001

Pattern

Name

Platform Subscription Pattern

Version 1

Date 08.12.2012

Authors Ulrich Scholten (1)

Status Under revision

Pattern

Type

Pattern

Intent This pattern provides a basic approach for managing subscription into a platform.

Applicabi-

lity

The solution is suitable for service platforms. It helps onboarding and maintaining subscribers

selectively. The subscribers can be service consumers, service providers or both.

Solution Members of an addressed user group subscribe and consume services. The transaction edge

pointing from the addressed target group to the subscribe-activity, which is endued with restric-

tive control. I.e., the user has to subscribe to the services and to accept the platforms’ service

provisions (or a subset). In the subscribed-activity, the platform exerts prescriptive control. The

activity subscribed allocates limited amount of freedom to consumers. Within the activity sub-

scribed, the platform exerts sanctional control, i.e., it retains the right and the power to exclude

users.

Diagram

Frequent

Features

The provisions in transaction and activity often include the following:

- Contractual agreement (acceptance of service platform terms),

- Request for consumer details (address, payment details).

Conse-

quences

The pattern is reduced to the core features of subscription. It blinds out any application specific

feature, e.g., geographical or market segment-specific distinctions due to national law or men-

tality. Those need to be added, when applying the pattern.

Sources not available

Examples Facebook, Netsuite.com, Salesforce.com,

Included

Patterns

-

Related

Patterns

-

B Solution Design

 142

Basic External Service Deployment Pattern Draft based on Programming Specification

Deployment of external services exists in many variations. The following pattern describes a

basic pattern, which ensures a rudimentary level of service manageability. It corresponds to the

approach, which was chosen by Salesforce in their initial stage of expansion of the

AppExchange / Force.com platform.

Pattern Id 00002.0002

Pattern

Name

Basic External Service Deployment Pattern based on Programming specification

Version 2

Date 21.02.2013

Authors Ulrich Scholten (1, 2)

Status Under revision

Pattern

Type

Pattern

Intent This pattern provides a basic approach for managing third party service deployment into a

platform.

Applicability The solution is suitable for all service platforms. It helps onboarding and managing services.

Solution Subscribed participants of a service provider group provide services for deployment on a

platform. Regarding it as a dynamic system, the activity deploy has the function of a stock.

The more services are provided, the more this stock replenishes. Restrictive control on the

transaction pointing from subscribed to deployed filters the infeed of services in function of

compliance to the platform service provisions, i.e. service design in compliance to the pro-

gramming specification, but also to legal requirements. The activity deployed includes sanc-

tional control, which regularly verifies compliance with the platform service provisions and

initiates escalation routines. In addition, it includes prescriptive control to manage the de-

ployed services. Services, requested from outside the control area through deployed services

are subject to restrictive control.

Dynamic Network Notation Ulrich Scholten

 143

Diagram

Frequent

Features

Some service platform operators include a sandbox into the ‘deployed’-activity to test a ser-

vice before deploying. Specific modeling of such a sandbox makes sense, if it is exploited in

causal loop, e.g., to attract early adopters in a testing phase.

Conse-

quences

The programming specification limits the service providers’ scope of freedom, i.e. with re-

spect to reutilization of services on other platforms. As a consequence, service providers could

be tempted to produce simple requestors, programmed based on the programming specifica-

tion, calling up external services. Many of the challenges with respect to service quality could

migrate from an upfront filtering through restrictive control to an ongoing verification through

sanctional control.

Sources not available

Examples S.Chand Edutech with a programming specification based on the standard SCROM.

Included

Patterns

Platform Subscription Pattern (00001.00)

Related

Patterns

-

Service Development Pattern Draft with Programming Environment

The following describes a service deployment pattern with a prepended programming environ-

ment, as used e.g., by Salesforce.com or Netsuite.

Pattern Id 00003.0001

PatternNa-

me

Service Development Pattern with Programming Environment

Version 1

Date 21.02.2013

Authors Ulrich Scholten (1)

B Solution Design

 144

Status Under revision

Pattern

Type

Pattern

Intent This pattern provides an approach for managing third party service deployment into a platform.

Applicability The solution is suitable for multisided service platforms. It helps onboarding, testing and maintain-

ing services and service providers selectively.

Solution Members of a target group provide services for deployment onto a platform. Regarding it as a dy-

namic system, the activity deploy has the function of a stock. The more services are provided, the

more this stock is filled. A programming environment is prepended to the deployment environment,

ensuring compliance to related service platform provisions. Apart from legal and administrative

aspects, the programming environment on the developing activity ensures service manageability in

the subsequent deployed activity. The activity deployed includes sanctional control, which regularly

verifies compliance with the company policy and initiates escalation routines. In addition, it includes

prescriptive control, managing the deployed services. Services, requested from outside the control

area subject to restrictive control.

Diagram

Frequent

Features
Some service platform operators include a sandbox into the deployed-activity to test a service be-

fore deploying. Specific modeling of such a sandbox makes sense, if it is exploited in causal loop,

e.g., to attract early adopters in a testing phase.

Consequenc-

es

The level of manageability is higher than in the case of a pure programming specification (see

00003.00)

Sources not available

Examples Facebook, Salesforce, Netsuite

Included

Patterns

00002.x - External Service Deployment Pattern based on Programming specification

Related Pat-

terns

Platform Subscription Pattern

Dynamic Network Notation Ulrich Scholten

 145

External Service Mediation Anti-Pattern Draft without mechanisms for quality and service con-

trol

The following anti pattern describes a service mediation approach, which led to unsuccessful

results.

Pattern Id 00004.01

Pattern

Name

External Service Deployment Pattern without mechanisms for quality and service control

Date 09.12.2012

Version 1

Authors Ulrich Scholten (1)

Status Under revision

Pattern

Type

Anti-Pattern

Intent This pattern provides a negative example on third party service deployment into a platform

Applicabi-

lity

The solution is unsuitable.

Solution The platform offers third party services in an unmanaged way. The services are not deployed on the

platform The platform’s role is limited to a market place. Due to a lack of control stakeholding power,

the platform operator lacks control over provided quality of service and service portfolio constellation. In

addition, the transaction lacks restrictive control.

Diagram

Frequent

Features

Often, service mediation is done through the platform. Actual service evocation and the related traffic is

done in a point-to-point way between service provider and service consumer. This limits the operator’s

role even further as he has no means to monitor the actually provided quality of service.

Conse-

quences

Enforcing control mechanism on activity and transaction are vital to assure quality of service and a ser-

vice portfolio congruent to corporate goals. All analyzed examples applying the above described anti-

pattern are underperforming.

Sources not available

Examples Xmethods, RemoteMethods

Included

Patterns

-

Related

Patterns

Anti-pattern to 00002.x External Service Deployment Pattern based on Programming specification and

to 00003.x External Service Deployment Pattern based on Programming Environment

B Solution Design

 146

Demand-sided Network Effect Pattern Draft

The following pattern describes a reusable structure for the creation and a management of de-

mand-sided network effects.

Pattern Id 00005.0003

Pattern

Name

Demand-sided Network Effect Pattern

Version 3

Date 25.02.2013

Authors Ulrich Scholten (1, 2, 3), Nelly Schuster (1)

Status Under revision

Pattern

Type

Pattern

Intent This pattern provides a solution for network effects that shall be exploited to grow the consumer

base.

Applicabili-

ty

The solution can be applied in single-sided and multi-sided service platforms. The precondition is

a deployment environment, scalable enough to cater for potentially accomplished dynamic

growth of service consumption through a demand-sided network effect. Applying it through col-

laborative scenarios created cases, requiring small critical masses, starting at a magnitude of 2.

Solution Members of a potential user group subscribe and consume services that were deployed by the

platform operator. Regarding it as a dynamic system, the activity consume services has the func-

tion of a stock. The more subscribed users consume, the more this stock is filled. The activity

deploy services also acts as stock. This activity represents the base value, which initially sets of

the system (indicated by the β-symbol). The quantity of users can motivate – together with a

quantity and quality of deployed services –new potential users to subscribe to the platform. This

motivation is weakened by competitive offers. The pattern channels explicit effort on positive

user influence on the addressed population through the application of several control mechanisms

in the context of a control loop: On the influence-edge, linking the consume activity and the

Gateway, platforms apply informative and motivational control. Informative control amplifies the

impact of the size of the user group. The nature of communicated information may vary; however

platforms in all analyzed cases communicated the subscribed number of users. Platform operators

may utilize motivational control in various shapes. The transaction edge pointing from the user

group to the subscribe-activity applies restrictive control. I.e., the user shall be required to accept

the platforms’ terms and conditions. Within the consume-activity, the platform shall exert sanc-

tional control, i.e., it may make use of its right and the power to exclude users. The deployment

of services in the described pattern is an internal activity, therefore limited to prescriptive control

and sanctional control. Exerting prescriptive control means to manage the deployment environ-

ment. Sanctional control stands for the power to undeploy a service. The platform operator exert

prescriptive control within the participant Internal Service Provision (e.g., in response to results

from reputation systems) and may exert restrictive control on the transaction leading from Inter-

nal Service Provision to deploy services. The influence-edge, pointing from the deploy activity to

the Gateway include the control mechanism of informative control. Informative control implies

the clear and targeted information on the product. The activity consume needs to be placed in a

scalable environment, to be able to respond to rapidly growing consumption. Strong growth be-

havior is realistic, as the activity is placed within a loop (= demand-sided network effect).

Dynamic Network Notation Ulrich Scholten

 147

Diagram

Frequent

Features
 In many cases, the influence-edge, pointing from the deploy activity to the Gateway also in-

cludes motivational control and market regulative control. Market regulative control is applied

through reputation mechanisms to reduce the entry barrier and to give decision support.

 The activity deploy services can be replenished by specific participants, representing the service

development departments within the platform. Linking edges are transactions.

Conse-

quences

The pattern is reduced to the core features of a service deployment. It blinds out any complex

feature, e.g., replication or synchronization. Those need to be added on a context based approach.

Sources not available

Examples Trello, Dropbox, Google Plus

Included

Patterns

00001.x - Platform Subscription Pattern

00003.x - External Service Deployment Pattern based on Programming Environment

B Solution Design

 148

Cross-sided Network Effect Pattern Draft

The following describes a reusable pattern for the creation and management of cross-sided net-

work effects.

Pattern Id 00006.01

Pattern

Name

Cross-sided network effect through service consumption and third party supply

Version 1

Date 08.12.2012

Authors Ulrich Scholten

Status Under revision

Pattern

Type

Pattern

Intent This pattern provides a solution for network effects that shall be exploited to grow the user base and

service base.

Applicabi-

lity

The solution can be applied in multi-sided service platforms. The precondition is a deployment

environment, scalable enough to cater for potentially accomplished dynamic growth of service

consumption through a demand-sided network effect and service deployment through suppliers-

sided network effects.

Solution Members of a potential user group subscribe and consume services that were originating from the

platform operator and the service provider. Regarding it as a dynamic system, the activity consume

has the function of a stock. The more subscribed users consume, the more this stock is replenished.

The activity deploy services also acts as stock. This ‘filled stock of services’ represents the base

value, which initially sets off the system (indicated by the β-symbol). The quantity of users can

motivate – together with a quantity and quality of deployed services –new potential users to sub-

scribe to the platform. This motivation is weakened by competitive offers.

The pattern channels explicit effort on positive user influence through the application of several

control mechanisms in the context of a control loop: On the influence-edge, linking the consume

activity and the Gateway, platforms applies informative and motivational control. Informative con-

trol amplifies the impact of the size of the user group. The nature of communicated information

may vary; however platforms in all analyzed cases communicated the subscribed number of users.

Platform operators may utilize motivational control in various shapes. The transaction edge point-

ing from the user group to the subscribe-activity applies restrictive control. I.e., the user shall be

required to agree to the platforms’ terms and conditions. Within the consume-activity, the platform

shall exert sanctional control, i.e., it may make use of its right and the power to exclude users. The

influence point from consume services to Service Providers embeds 2 control mechanisms: in-

formative control and market regulative control. Deployed services are of internal and external

origin. Services of internal origin are limited to prescriptive control and sanctional control. Exert-

ing prescriptive control means to manage the services. Sanctional control stands for the power to

undeploy a service. The platform operator exerts prescriptive control within the participant Internal

Service Provision (e.g., in response to results from reputation systems) and may exert restrictive

control on the transaction leading from Internal Service Provision to deploy services.

Members of the targeted consumer group subscribe and consume services that were deployed by

the platform operator. Regarding it as a dynamic system, the activity subscribed has the function of

a stock. The more subscribed users consume, the more this stock is filled.

The pattern channels explicit effort on positive user influence on the addressed population through

the application of several control mechanisms in the context of a control loop: On the influence-

edge, linking the consume activity and the Gateway, platforms shall apply informative and motiva-

tional control. Informative control amplifies the impact of the size of the user group. The nature of

communicated information may vary; however platforms in all analyzed cases communicated the

subscribed number of users. Platform operators may utilize motivational control in various shapes.

The transaction edge pointing from the user group to the subscribe-activity shall apply restrictive

control. I.e., the user is required to accept the platforms’ terms and conditions. Within the sub-

Dynamic Network Notation Ulrich Scholten

 149

scribed-activity, the platform shall exert sanctional control, i.e., it may make use of its right and the

power to exclude users. The influence-edge, pointing from the deployed activity to the Gateway

includes the control mechanism of informative control. Informative control implies the clear and

targeted information on the services. The activity subscribed needs to be placed in a scalable envi-

ronment, to be able to respond to rapidly growing consumption. Strong growth behavior is realistic,

as the activity is placed within a loop (= demand-sided network effect). The influence-edge, point-

ing from the subscribed activity to the Targeted Supplier Group includes the control mechanism of

informative control. Informative control implies the targeted information on consumption.

The activities subscribed and deployed need to be placed in a scalable environment, to be able to

respond to rapidly growing consumption. Strong growth behavior is realistic, as the activity is

placed within a loop (= demand-sided network effect).

Diagram

Frequent

Features
 In many cases the influence-edge, pointing from the deploy services activity to the Gateway also

includes motivational control and market regulative control. Often suggestions are used, e.g.,

‘other users, applying this service also applied XYZ’. Market regulative control in this case

stands for the use of reputation mechanisms to reduce the entry barrier and to give decision sup-

port.

Conse-

quences

This pattern couples two causal loops and enforces a cross-sided network effect. Quality control

functions need to be properly in place to harness positive effects but also to avoid the negative

scenario of negatively accelerating loops, e.g., initiated through the provision of low quality third

party services.

Sources not available

Examples Salesforce.com, Netsuite

Included

Patterns

00005.00 - Demand-sided Network Effect Pattern

00003.00 - External Service Deployment Pattern based on Programming Environment

Related

Patterns

-

B Solution Design

 150

Pattern Draft for Finite Areas of Control

The following describes a reusable pattern for the creation and management of finite areas of

control. The surveys brought to light several successful providers applying this pattern and thus

mixing approaches of web-based applications and native apps.

Pattern Id 00007.0001

Pattern

Name

Patterns for Finite Areas of Control

Version 1

Date 25.02.2013

Authors Ulrich Scholten

Status Under revision

Pattern

Type

Pattern

Intent This pattern provides a solution for network effects that should be exploited to steer and grow the

user base.

Applicabi-

lity

The solution can be applied in single-sided and multi-sided service platforms. The application has no

precondition.

Solution Subscribed consumers receive a native working environment on their local infrastructure (e.g., on a

client computer or server). The platform operator uses the opportunity to be closer to user data to get

access to this data in a legally permitted and from the consumer approved way. Local applications

also help saving bandwidth and buffer potentially unstable Internet connection. Prescriptive control

gives the platform operator control over this area. It also allows after release by the consumer to

access user data (e.g., email addresses, settings etc.) or to change system settings on a customer infra-

structure (e.g., default browser setting). Sanctional control allows the platform operator to terminate

the application. Motivational and informative control in the activity working locally guides the sub-

scribed users. An influence points via a Gateway to a targeted customer group. A transaction point-

ing back to the activity subscribed and subsequently working locally creates a causal loop. Gained

user data helps to address specific target customers from the subscribed users’ communities.

Diagram

Frequent

Features
 Several platform operators deployed decentralized finite control areas on client computers.

 Several platform operators requested consumers for permission to read out local email address-box

to identify other subscribed users respectively to invite unsubscribed users.

 One platform operator implemented synchronized environments on client servers to overcome

instable Internet connection.

Conse- Legal implications of and scope for decentralized finite control areas may vary, depending on the

Dynamic Network Notation Ulrich Scholten

 151

quences physical location of the customer infrastructure.

Sources not available

Examples Google Drive, Dropbox

Included

Patterns

-

5.5.3 Coordinated Community-Based Management Process

To be attractive to potential users in a cross-industrial context, the repository needs to respond in

sufficient variety to wide-spread options, contributed and verified by experts from the concerned

communities. For this reason, the present work applies a community-driven approach to develop

patterns for the repository. Following the line of thinking of network effects, this concept applies

a demand-sided causal loop. This view is examined further in the remainder of the subsection.

The quantity of initial patterns in a pattern repository needs to exceed a threshold to incite net-

work effects. The coordinated model reverts to and further develops the service-oriented collabo-

ration model (MoSaiC), introduced by Schuster, Zirpins et al. [135]. This collaboration model

builds on two parts: the collaboration process and the coordination process.

Collaboration process:

The previous chapters on the Dynamic Network Notation gave an in-depth introduction into de-

mand-sided network effects. A community-driven approach is a specific case of such a same-

sided network effect. It makes use of a targeted group of potential (but unspecific) repository

users that are in need of service patterns. It works, and is able to sustain itself, once a critical

mass is reached and on condition that the network effect does not die off. In contrast to traditional

community-driven approaches to content production, the present process includes quality control

through explicit approval processes and defined collaboration processes. Following the collabora-

tion model in MoSaiC, patterns and their elements are considered as services provided by the

collaborating community members. Users make contributions in a self-paced way; a multitude of

coordinators is in charge of quality control.

B Solution Design

 152

Figure 35: Meta-model for the collaborative composition process for Service Management Pattern reposi-

tory based on Schuster, Zirpins et al. [135]

The person initially suggesting a pattern becomes coordinator, also taking this role during sub-

sequent updates. He structures patterns P as an ordered tree of expected results R with

P = {R, CR} with the set of results R and the relationship CR. The relationship CR is a subset of all

possible relations within the set R, defined through the languages production rules (syntax). The

possible set of relations can be described as CR R x R. Figure 35 illustrates that a result can

either be a Dyno model, a description or a pattern. The latter is possible due to the language’s

context-free nature. The meta-model for the collaborative pattern composition process discussed

(Figure 35) is a refinement of an initial version, introduced by Scholten, Schuster et al. (2012).

Looking at patterns as linguistic utterances generated through a collaborative composition pro-

cess, they can be redefined as follows:

Definition 79: Patterns are ordered trees of results of a collaborative composition process, relat-

ed through its production rules.

Definition 80: A result of a collaborative composition process can be a pattern, a Dyno model or

a description.

The owner of a pattern is entitled to add and remove results throughout the collaboration pro-

cess. Experts provide contributions as services into a pattern template (Figure 35). Those experts

can be humans or software services (e.g., an Id generator or an automatically generated improved

model subset, produced by an analyzer). The composition model includes several standard ser-

Dynamic Network Notation Ulrich Scholten

 153

vices, e.g., pattern draft service or pattern approval services. The number of contributions (on any

part of the pattern) leading to a result is arbitrary and depends on the specific composition pro-

cess and the eventual number of required iterations. The service-based approach is of particular

importance as it allows for flexible assembly and decomposition of patterns, regardless of human

or software-based origin.

b) Coordination process:

Coordination rules manage dependencies between pattern components and control the execution

of services. The coordination rules are preset but can be theoretically modified. The pattern re-

pository reverts to MoSaiC’s event-condition-action (ECA) rule mechanism. For details on the

rule mechanism see Scholten, Schuster et al. [44]. This mechanism comprises of

 Automation protocols for automating of service bindings as well as request / response

protocols.

 Application-specific dependency management for the management of dependencies

between individual patterns or subsets.

A coordination rule engine automates coordination and executes the rules. Service binding

protocols bind a service to a specific contribution. In other words, a specific community member

accepts responsibility for a result based on agreement with the coordinator of the result. Figure 36

describes the service binding process. A process starts once a community member accepts owner-

ship for a pattern. He then initiates a pattern or updates an existing pattern. In case of an attempt

for modification of an existing result, the community member requests or addresses the respec-

tive pattern owner. This owner can accept or decline the binding. In the case of an acceptance, the

state changes from ‘binding open’ to ‘bound’. The same protocol applies, when the coordinator

invites a reviser, only with exchanged roles.

Figure 36: Service binding protocol [44]. Ovals depict a contribution’s state; dashed arrows describe the

experts’ and solid arrows the owners’ decisions. Binding open is the starting state

bound

binding
open

asked for
binding

delete binding

ask for binding

decline binding

accept binding

abort

expert owner

B Solution Design

 154

After successful binding of a service, service request/response protocols enable provisioning,

update and approval of results (Figure 37). The following example serves to illustrate this pro-

cess: The owner of a pattern first creates a result placeholder. Then he identifies a required con-

tribution, e.g., for frequent features. As next step, he binds a service to the contribution which

invoked the service. The expert then executes the service which writes the frequent features de-

scription into the pattern template. The state changes from identified to created. In the initial con-

figuration of the rule engine, three approvers need to approve a process before a pattern can be

updated. Until approval, the pattern rests in the under revision state. The initial definition of three

approvers is assumption based and nothing more than a starting point for optimization in a subse-

quent optimization period. Those approvers are also community based.

a) Result life cycle

b) Contribution life cycle

Figure 37: Service request and response protocol [44]

Figure 38 describes the Service Pattern repository in a Dyno Model. The repository will not

attract an initial external user community until it has attained a sufficient amount of patterns.

When this goal is accomplished, the activity publish and update patterns represents the base val-

ue with respect to the repository’s network attractiveness on the target group. The model also

reflects the approval process. Community users can provide updates. Other community members

can release those updates. The released pattern goes to the activity publish and update patterns.

The Dyno model illustrates that the repository has by initial design already three same-sided

causal loops. The users of the pattern repository might stimulate others to use the repository. The

next causal loop is due to the MoSaiC coordination process (through binding). A coordinator

invites specific experts or a group of potential experts for contribution and revision. Those may

created
create content

approve content
approve content

approved

updated
update content

update content

identified
identify result

bound

update or

approve content

executed
create, update

or approve content

requested
request service

request service

request service

bind service

Dynamic Network Notation Ulrich Scholten

 155

be acquired from outside the group of subscribed users. Finally, the continuously growing stock

within the publish and update patterns activity will further increase the repository’s value to po-

tential users. To further stimulate the network effects, the modeler can further develop the indi-

rect control mechanisms ‘informative control’ and ‘motivational control, in each case on the in-

fluence edges. Scholten, Schuster et al [44] provide further deepening to the repository’s coordi-

nation rules.

Figure 38: Pattern repository, modeled with Dyno

B Solution Design

 156

5.6 Modeling Recommendations

One characteristic of Dyno’s grammar is that it allows for modeling free of any mandatory se-

quence. When implemented in an editor, the modeling environment only allows those options

which are syntactically correct. This section therefore constrains itself to a list of good practices,

which result from experiments with various test users.

Starting With a Basic Layout

It makes sense to start with a general layout. Placing the influence area and within it the control

area (Figure 39)

Figure 39: Basic Layout

Allocating and Connecting Important Participants and Activities

In a second step, the modeler could place important participants and activities. To assure clarity

from the beginning, it is useful to place or group nodes into divisions.

The modeler should evaluate various levels of granularity when modeling activities and partic-

ipants or participant groups. It may be helpful to split participant groups into several groups of

distinct communities to be able to better focus the subsequent control mechanisms. Or he may

split an activity (e.g. deployed) into a sequence (e.g. deployed and in sandbox) or into parallelized

branches. This gives the option of additional loops, but reduces clarity of the model. In the illus-

trating models, the present work consistently differentiates between activities by consumers and

activities by suppliers. This dyadic might dissolve in cases where the same group creates and

consumes.

Dynamic Network Notation Ulrich Scholten

 157

Depending on the modeler’s line of thinking, two approaches could make sense:

 Focal approach - The modeler starts with an initial node, which he assumes carries the

base value in the current model (activity or participant). Then he models one or several

causal loops, around or near this node. Afterwards he places control mechanisms. In-

dependent of the modeler’s mindset, this approach could make sense for a startup,

which can start off without many legacy structures requiring consideration.

 Decentralized approach – The modeler places all activities and assets into individual

divisions. Then he decides on one or several base values to focus on in the current de-

sign. Then he inserts edges in pursuit of generating causal loops. In a next step, he

places the control mechanisms to strengthen the desired network effects.

Figure 40: Focal approach (left) and decentralized approach (right) to modeling

Choice of Base Value

Within the above step of allocating and connecting nodes, the modeler needs to evaluate which

potential base value or base values are suitable to incite network effects. The modeler could com-

pare existing value contributions and rank them. Then he models the top ranked value contribu-

tion as the base value in the context of his model. A second approach is to do this selection based

on comparison of alternative models. This approach has the advantage that not only the isolated

base values are subject to comparison, but the whole loop, including targeted participant groups

etc. When brainstorming on base values, the modeler should not restrict his listing to offered

software services, but also look at other less tangible values, which might be of relevance to his

target groups (e.g., subscribed consumers in other contexts).

For causal loops, the availability of a critical mass within an activity is important to create

network attractiveness. If no sufficient critical mass is available, the modeler might need to re-

think the setting of a loop with a network attractiveness of smaller thresholds (e.g., the loops de-

B Solution Design

 158

signed with collaborative scenarios by Dropbox or Trello). Alternatively, he may build on an

internal value contribution, modeled with a participant porting the base value. Such a base value

is not exposed to network attractiveness, however it can incite the evolution of a new base value

(e.g., consumer subscription base), which can subsequently serve as a starting point for a causal

loop with network attractiveness.

Sequence of Models for Different Growth Phases

Platforms go through processes of evolution and maturity. Those different phases require differ-

ent models. Design should always capture the actual setting and then build on it and modify it.

Section 5.4 illustrates the different growth phases of the company Salesforce with different mod-

els reflecting different focus.

Parallelization of Causal Loops within One Design Period

In specific settings, i.e., cross sided loops, two or more loops are interdependent. In other cases,

causal loops might exist in parallel to each other, without reinforcing or weakening effects. The

present work cannot give exhaustive information whether one specific period of platform design

should focus on one main one-sided or cross-sided causal loop. Supporting argument for such a

design decision is the potential to interlink the detached loops and cause reciprocity on each oth-

er. Counter arguments that focus on one major loop may sharpen the value promise in the market.

To the author’s best knowledge, no academically validated theory is available at the time of the

write up of this thesis. Ries’ [117] standpoint to better focus on one engine of growth is not em-

pirically substantiated. Companies like Google successfully operate several causal loops in paral-

lel.

Platform Engineering versus Platform Strategies

The Dynamic Network Notation (Dyno) guides the modeler through the production rules de-

signed for the specific case of harnessing network effects. It helps in the structural allocation of

nodes, in the design of relationships and loops and in the allocation of control mechanisms for

service management. The pattern language provides a complementing structured base on experi-

ence in favor of a good model. Subsequent automated analysis, if implemented, may even give

further guidance in modeling a platform which has potential to be successful in the market.

With an engineering bias, the present work supports platform engineering through suitable ar-

tifacts. It supports, but does not replace platform strategies. Please refer to further going academic

literature on platform strategies [6, 22, 139, 140].

Dynamic Network Notation Ulrich Scholten

 159

C Instantiation and Evaluation

6 Instantiation

Part C instantiates and evaluates the concept of the Dynamic Network Notation in the editor

DynoCloud.org, including two iterations of refinement after interventions with targeted compa-

nies, as suggested in the Action Design Research methodology [38]. The objective is to validate

the hypotheses, stated in Section 2.9. This chapter presents the DynoCloud.org editor including a

model designer and an analyzer. In particular, it describes the model designer’s general concep-

tion (Section 6.1) and its concrete grammar being implementation-specific to the modeling envi-

ronment (Section 6.2). The subsequent DynoAnalyzer shows that Dyno’s grammar, the way it is

conceived, can be the starting point for further analysis (Section 6.3). The analyzer features also

serve as proof of concept and do not intend to claim to be exhaustive. In the contrary they aim to

create grounds and to open perspectives for further going research.

In the context of the present work, the editor DynoCloud.org serves as instantiation to the Dy-

namic Network Notation to validate the hypotheses. It also supports additional reflections on

grammatical effectiveness with respect to the possibility of subsequent analytics. The goal of this

editor is to give solution managers and platform architects a tool for design, analysis, evaluation

of design alternatives and the targeted evolution of platforms and platform ecosystems, optimized

on network effects and quality of service.

Basic requirements of the editor are easy access, a comfortable graphical user interface, the

potential to share designs and an un-expensive cost per user ratio. Specific requirements relate to

model design and analysis. For design, the solution requires a modeling and storage environment

as well as a storage repository that holds available the necessary structural and procedural ele-

ments as well as control mechanisms. It further necessitates a user interface for configuration of

control mechanisms and element attributes. For analysis, it requires a unit able to prepare, ana-

lyze and display data.

Figure 41 provides a system architecture diagram of the DynoCloud.org architecture based on

the semi-formal graphical notation Fundamental Modeling Concepts (FMC) [141]. The architec-

ture accommodates the above specified features, grouped into two main components:

(a) Model designer, including a shape repository, a modeling environment, a property

configuration panel, a Dyno model repository and the necessary backend.

(b) Analysis-environment, consisting of an analyzer and analysis plug-ins.

In the editor’s current implementation, the data export from the modeling environment to the

Analysis environment is a unidirectional read access, reading out the Dyno model as object file in

C Instantiation and Evaluation

 160

JSON format. At the time of the write-up, the Analyzer GUI does not yet use the browser, but

works with a SWING-based graphical user interface.

The following sections describe the model designer (Section 6.1), its concrete grammar (Sec-

tion 6.2) and the analysis environment (6.3).

Figure 41: Editor architecture

6.1 Conception of the Model Designer

The configurable framework ORYX provides the infrastructure for an exemplary implementation

of Dyno. ORYX is a web-based extensible modeling platform and repository supplied under MIT

open source license [142]. Among others, ORYX has the advantage that it is conceived for busi-

ness process modeling languages [143]. It is mature and proven in the BPM community through a

variety of language implementations e.g. by Decker, Grosskopf et al. [144] or Cabanillas, Resinas

et al [145]. A specific stencil set and a plug-in equip the ORYX framework with a concrete

grammar for the Dynamic Network Notation and turn it into an operational modeling environ-

ment that is fully responsive to the above specified requirement (a). This section providers further

substantiation on the general concept of the model designer.

Figure 41 describes the general editor architecture. The left bottom square describes the model

designer. The architecture model depicts the modeling environment and process model repository

ORYX as active component. This active component provides all the intelligence to operate, store

and display business-process-oriented modeling and configuration for process models based on

Dynamic Network Notation Ulrich Scholten

 161

edges and nodes. The process model (in this context a Dyno model) is a passive element. The

ORYX component has write access (save a model) and read access (reload a saved model). OR-

YX gains its Dyno-specific grammar through read access to the Dyno stencil set and through

bidirectional communication with the active plug-in Runtime Constraint and Layout Processor.

Bidirectional communication between ORYX and the browser allows for emulation of the model-

ing environment including its graphical user interface on client computers and the storage of

models in the process model repository.

Figure 41 brackets the ORYX infrastructure in one active system component (Modeling

Environment and Dyno Model Repository). For detailed description of ORYX, please refer to

Decker et al. [143].

Figure 42: Graphical user interface to the model designer including a Dyno-model, accomplished with

ORYX

C Instantiation and Evaluation

 162

The graphical user interface (Figure 42) consists of 3 frames:

 a shape repository on the left side with all relevant Dyno-elements,

 the modeling canvas in the middle; in Figure 42 it shows a sample model of an activity

and a participant connected through a transaction,

 a property configuration panel on the right side; Figure 42 shows the configuration of

the participant Platform Service Production with the activated properties Base Value

and Prescriptive Control.

In addition, the graphical user interface provides a horizontal tool bar with typical standard func-

tionalities such as Save, Print, Copy, Past, Undo, Export, Resize. After login through OpenId the

user can save his models and reload them in succeeding sessions.

ORYX’s export feature allows for exporting Dyno-models in JSON format (JavaScript Object

Notation) to the analysis environment. The model designer uses an export feature, which is spe-

cially modified for analysis purposes of Dyno models, i.e. it allows exporting full language in-

formation on a specific Dyno model, exceeding the normal data, exported by ORYX. Technical-

ly, the Model Designer runs on a virtual machine instance with 2CPU Cores, 2GB RAM and Se-

cure Shell access as system platform, executing an Ubuntu Server LTS 10.04, 64-bit. An Apache

Tomcat 5.5 serves as web server and servlet container. It uses a PostgreSQL server as database.

Dynamic Network Notation Ulrich Scholten

 163

6.2 Concrete Grammar

The artifacts defined in this section are located on level M1 of the model stack (Table 32). In

particular, they concretize morphology (Subsection 6.2.1) as well as the grammar (Subsection

6.2.2). Both concrete morphology and concrete grammar are specific to the ORYX environment.

Table 32: Concrete grammar in the context of the model-stack

The specifications in this section reference the following normative, dated documents. Those

documents in the specified release date are therefore provisions to the Dyno language and editor

specifications. In the remainder, the text does not further explicitly reference these documents:

 IEFT request for comment document RFC4329 on Scripting Media Types, i.e.

JavaScript [146];

 IEFT request for comment document RFC4627 on application/json Media Type for

JavaScript Object Notation (JSON) [146, 147];

 W3C recommendation on Scalable Vector Graphics and RGB color model [148].

C Instantiation and Evaluation

 164

6.2.1 Concrete Morphology

Concrete morphology in graphical languages prescribes the representation of graphical elements

specific to the technical implementation. Concrete morphology in DynoCloud.org follows the

requirements of the ORYX framework and becomes part of the ORYX stencil set (Figure 41). It

is accomplished through Scalable Vector Graphics (SVG) [148]. SVG is an XML-based language

for two dimensional vector graphics. Two of the strengths, which make SVG suitable for ORYX

is that first, the SVG-format is browser readable. Second, the language’s set of formatting rules

for the portable and lightweight representation of graphics can be easily parsed by many other

web-oriented languages, i.e. JavaScript.

Dyno’s concrete morphology builds on this. Dyno elements contain different representations

of an element in one SVG-file. E.g. the participant includes the standard symbol definition as a

tag and a second tag for the context-sensitive controllability symbol.

The following line describes the tag for the basic participant definition

 <rect id="participantView" fill="url(#background) #FFFFFF" stroke="#000000"

width="150" height="100" rx="20" ry="20"/>

The element-name rect calls up a rectangle of the attribute value participantView, meaning it

creates the participant shape. It has a white background and a black stroke, a width of 150 pts and

a height of 100pts. The angles are rounded with a radius of 20pts.

The Participant.svg also includes a layout instruction for the graphical representation of the

property ‘controllable’:

<g id="controllable" >

 <circle id="circlewhite" cx="10" cy="10" r="5" stroke="black" fill="white" stroke-width="1"/>

</g>

The concrete syntax (sub-section 6.2.2) adds the attribute id=controllable in design-time,

whenever the context requires this.

The representation’s adaptiveness allows the conception of the shape repository in a reduced

and clearly arranged way. The shape directory includes only one edge-symbol for all possible

variations of influences and transactions. The concrete syntax adapts them in design time. This

ensures the Dyno model’s syntactical correctness. In consequence, the editor guides the modeler,

when designing an object by only allowing elements suitable to the context. Indirectly this also

impacts the models’ effectiveness. As the shapes appear with attributes mapped to the specific

context, the modeler will unlikely forget considering them.

Dynamic Network Notation Ulrich Scholten

 165

6.2.2 Concrete Syntax

Following Definition 32, syntax defines the assembly rules for modeling elements, as well as the

adaptation of specific graphical representation of those modeling elements in function of the pro-

duction rules. Concrete syntax in graphical languages is the set of production rules specific to the

technical implementation. The present work implements the concrete syntax in the ORYX

framework through two steps:

 Dyno-specific stencil, written in JSON-format. This file defines the assembly rules of

modeling elements (a). The stencil set also includes the SVG-based concrete morphol-

ogy.

 Dyno-specific plug-in, written in JavaScript. This routine handles the adaptation of

specific graphical representation of modeling elements in function of the production

rules in design time (b).

(a) Stencil Set

The Stencil set for Dyno uses the JSON format complemented by a set of jpeg images represent-

ing the icons of the shape repository. The JavaScript Object Notation (JSON) is a lightweight

portable data exchange format to describe structured graphics, similar to XML. It is specified in

the RFC4627 [147]. Its advantage in the ORYX framework is the proximity to JavaScript. The

JavaScript statement executor function eval() turns JSON-definition into interpretable JavaScript

Objects.

The JSON file provides definitions for all Dyno stencils including their properties and possi-

ble relations to other elements in compliance to the Dyno meta-model. It also includes implemen-

tation specific information such as the reference to its svg representation and in addition a refer-

ence to its respective icon (in jpeg-format) in the shape repository.

"type":"node",

"id":"participant",

"title":"Participant",

…

"description":"",

"view":"elements/participant.svg",

"icon":"elements/participant.png",

"propertyPackages":[

 "RootElement",

 "bgColor",

 "mayBeBase",

C Instantiation and Evaluation

 166

 "uncontrolled",

 "AbstractNode",

 "prescriptiveControlPackage"…]

The above example code segment defines the participant element. Specifically, it defines that

it is of type node, including an empty string for the variable description. The latter defines the

field description, which the user can fill in the configuration panel. The view refers to the related

svg-element defining the morphology, the icon refers to the file supplying the symbol in the

shape repository. The property packages refer to the inherited properties from the root element, to

the standard color, to its capability of becoming a base value to and to the AbstractNode. The

control packages refer define the control mechanisms of the element (the code fraction exempla-

rily states the prescriptiveControlPackage).

From the Abstract Node, the elements inherit (under specific constraints as defined in the me-

ta-model) the property controllable with the default setting false as described in the following.

{

 "id":"controllable",

 "type":"Boolean",

 "title":"Controlled",

 …

 "refToView":"controllable",

 "value":false

}

The runtime constraint and layout processor can set this property value true in compliance

with the constraints in the meta-model in design time. If compliant, it also adds the circle symbol

to the node by calling up the tag refToView in the svg file. A controllable node can be turned con-

trolled by the modeler. This is again accomplished through the runtime constraint and layout

processor in design time.

The JSON file defines allowed areas for each Dyno shape through containment rules as de-

scribed in the following exemplary code-fragment for the control area.

Dynamic Network Notation Ulrich Scholten

 167

"containmentRules":[

 {

 "role":"controlArea",

 "contains":[

 "activities",

 "divisions",

 "participants"

]

 },

]

The JSON-File further defines the allowed relationships through connection rules. The follow-

ing example embraces all edges. The runtime constraint and layout processor (described below)

defines in an exclusive or approach, whether the respective setting requires the morphology Influ-

ence or Transaction.

“connectionRules":

[

 {

 "role":"edge",

 "connects":[

 {

 "from":"participants",

 "to":[

 "activities",

 "gateway"

]

 },

 {

 "from":"activities",

 "to":[

 "activities",

 "gateway",

 "participants"

]

 },

C Instantiation and Evaluation

 168

 {

 "from":"gateway",

 "to":[

 "gateway",

 "participants"

]

 }

]

(b) Plug-In for a Runtime Constraint and Layout Processor

By definition, syntax also has the task to adapt specific graphical representations of modeling

elements in function of the production rules. This task requires adaptation of the element repre-

sentations in design time. ORYX provides a layout method. In ORYX, this subset of the concrete

syntax needs to be programmed in JavaScript. The following code-fragment shows how a func-

tion is bound to the event that is in charge of laying out a participant. Laying out means the mod-

eler touches or changes an element with the mouse.

construct : function (facade) {

 this.facade = facade;

 this.facade.registerOnEvent('layout.dyno.participant', this.handleNodeEvent.bind(this));

}

Whenever the modeler touches a participant, the function executes a series of methods. The

following fragment shows how it adapts the property controllability on the constraints of a spe-

cific area.

_checkControllable : function (node) {

 var parentStencilID = node.getParentShape().getStencil().idWithoutNs();

 if (parentStencilID === "noiseArea") {

 this._setControllableFalse(node);

 } else if (parentStencilID === "influenceArea") {

 this._setControllableFalse(node);

 }

 else if (parentStencilID === "controlArea" || parentStencilID === "division" || parentSten-

cilID === "divisionGroup") {

 node.setProperty('oryx-controllable', true);

Dynamic Network Notation Ulrich Scholten

 169

 parentStencilID = "controlArea";

 }

 node.setProperty('oryx-location', parentStencilID);

}

6.3 Conception of the Analyzer

The DynoAnalyzer is not part of the Dyno language specification. However, it is a helpful add-on

for analysis of a model and its effectiveness as well as for the generation of suggestions to the

modeler. Similarly to ORYX, Scholten and Reimchen [149] published the source code to the

Dyno Analyzer under an MIT License.

The analyzer consists of an analysis environment and analyzer plug-ins (Figure 43). Figure 41

shows a dotted connection from the analyzer to the browser to indicate the objective of integrat-

ing model designer and analyzer into one browser-based GUI. The following sections describe

the analysis environment (Subsection 6.3.1) and its plug-ins (Subsection 6.3.2).

The analyzer serves as proof of concept, substantiating that the Dyno grammar is suitably

well-structured for consecutive analysis. This successive analysis is one of the claims of hypothe-

sis MH. Subsection 6.3.2 provides exemplary examples, which confirm that the Dyno grammar

includes sufficient information for the generation of subsequent analysis. The subsection exem-

plifies:

 Analysis of Completeness of control mechanism implementation,

 Detection of Loops,

 Analysis of availability of base values,

 Structured listing of included elements, their properties and descriptions.

C Instantiation and Evaluation

 170

6.3.1 Analysis Environment

The analyzer core is the central component within the analysis environment. It handles all major

administrative tasks of the analyzer. The analysis functionalities however are treated by plug-in

programs (see subsection 6.3.2).

 Figure 43: Dyno analyzer

Figure 43 describes the analyzer. Its central analyzer core fulfills the following tasks:

 Read the Dyno object file, exported from the Model Designer in JSON format.

 Read the analyzer’s concrete syntax, implemented in Java. This syntax is a concrete

implementation of the Dyno meta-model and enables Java-based analysis through the

plug-ins.

 Read the graph library. This prototypic implementation works with the library

JGraphT [150].

 Create a new java-based Dyno object (analyzer Dyno model) as instantiation of the

analyzer’s concrete syntax. This new model does not have any graphic representation.

It is serves subsequent analysis in the plug-ins.

 Alternatively or in complement to the analyzer Dyno model, create a graph of the ana-

lyzer Dyno model for potential subsequent graph-theoretical analysis. Technically, this

is accomplished through a specific library for Graph analysis (JGraphT).

 Hand over to the plug-ins via bidirectional interface the following: graph, analyzer

Dyno model and GUI-container.

Dynamic Network Notation Ulrich Scholten

 171

Depending on their implementation and objective, the plug-ins read the analyzer’s concrete syn-

tax and / or the graph library. Through the received GUI container, they feedback analysis results

to the analyzer core for visualization in the graphical user interface. The plug-ins define the re-

sult’s graphical representation.

The conception of the analyzer shows that the object files, produced through the concrete im-

plementation of Dyno allow for further going analysis. The subsequent analyses intend to:

 Substantiate the languages expressiveness beyond pure modeling, highlighting its abil-

ity to also convey information for analysis and recommendation in a semantically cor-

rect way.

 Provide evidence for the languages effectiveness, describing how well it can express

information for its specific target group and purpose. I.e., the following section shows

that the object file holds data for subsequent analysis with respect to network effects.

 Show that Dyno can improve the modeler’s efficiency in guiding him through provi-

sion of structured information and potentially through subsequent recommendations.

C Instantiation and Evaluation

 172

6.3.2 Analysis Plug-ins

This subsection exemplifies a selection of prototypic analyses. Those analyses are not exhaustive.

They analyze the model as given in Figure 44. This model deliberately has a series of shortcom-

ings. Several control mechanisms are not applied at all. The supply sided causal loop cannot lead

to any network effect as the modeler targets only a specific partner.

Figure 44: Dyno model

All subsequent analyses are based on the analyzer Dyno model. Experiments with the model’s

graph confirm that the model provides a basis for graphic theoretical analysis. Experiments pro-

vided e.g. a ranking of most prestigious and most central nodes [151]. Graph-theoretical analysis

of Dyno models and the production of validated results remain subject to future research.

Dynamic Network Notation Ulrich Scholten

 173

Analysis Plug-in for Completeness of control mechanism implementation (Nodes)

This plug-in parses the Analyzer Dyno Model and verifies whether or not there are nodes within

the control area, where no control mechanisms are active. Based on this list, the modeler can re-

flect, whether it is of value to add additional control mechanisms. This solution is rudimentary

and limited on nodes. In more comfortable realizations, the analyzer would include the edges. It

could e.g. further check each possible control mechanism per element.

Figure 45: List of elements with missing control mechanisms

Figure 45 shows a list of elements with missing control mechanisms.

Analysis Plug-in for Detection of Loops

Figure 46 lists the loops in the Dyno model. It further highlights the shortcoming in the cross-

sided loop. The modeler puts only one single partner into the loop. He also did not place the ac-

tivity deploy services into a scalable environment. The plug-in also highlights that the demand-

sided loop lacks a scalable environment. This analysis builds on the Analyzer Dyno Model.

Figure 46: List of loops and highlighting of the shortcoming

C Instantiation and Evaluation

 174

Analysis Plug-in for Verifying the Availability of Base Values

This plug-in verifies, whether the system includes base values. It further comments, whether the

base values are within an activity or within a participant. This differentiation is important as the

latter do not exhibit any network attractiveness.

Figure 47: Analysis indicating the participant carrying the base value and the fact

that it lacks network attractiveness

The model in Figure 44 includes one base value represented by the Department of Own Value

Contribution. As Figure 47 correctly states, this base value is carried by a participant and does

not exhibit network attractiveness. Such a result should motivate the modeler to verify whether he

could potentially model base values on an activity. One option for improvement would be e.g., to

integrate causal loops through collaborative scenarios around the subscribe activity, designed on

small thresholds. A future release of this plug-in could suggest alternative base value scenarios,

e.g. through referencing suitable patterns in the pattern repository.

Dynamic Network Notation Ulrich Scholten

 175

Analysis Plug-in for Structured listing of included elements, their attributes and descriptions

Figure 48 gives a structured listing of the model’s nodes, as well as their attributes. The list of

edges and divisions would look similarly.

Figure 48: Fragment of structured listing of elements including their attributes and description.

C Instantiation and Evaluation

 176

Dynamic Network Notation Ulrich Scholten

 177

7 Evaluation

The present chapter presents the evaluation of the Dynamic Network Notation and its editor

through a set of case studies. The field studies shall help scrutinizing DYNO and the editor

DynoCloud.org and evaluate their ability to respond to the underlying hypotheses of the present

work. They shall show that DYNO improves platform and ecosystem design in comparison to

design without the tool.

Focusing on the Dynamic Network Notation, the analyzer is not part of the evaluating case

studies. Its prototypic implementation substantiates the claim that Dyno is expressive enough to

allow for further going analysis. Also the pattern language does not receive any consideration in

the case studies. Its well-formedness is validated, once the Dynamic Network Notation is validat-

ed, as its patterns build on Dyno, complemented through descriptive text sections. Schuster [152]

instantiated and discussed model and infrastructure to proof technical feasability.

This chapter first introduces the general evaluation approach (Section 7.1) and then sequentially

implements two case study methods. Case study setting I conducts an expert workshop with one

platform operator. The author and the experts jointly model and discuss the expressiveness and

quality of the Dynamic Network Notation (Section 7.2). After integrating lessons learnt and im-

plementing the editor DynoCloud.org, the author conducts questionnaire based case studues with

three participating companies (Section 7.3).

7.1 Evaluation Approach

Following the design science research method [45], the Dynamic Network Notation and its in-

stantiation require evaluation. On the basis of Pfleeger and Kitchenham [153] the present work

accomplished the following steps to design and conduct the evaluating survey:

 Fixing specific and measurable objectives as well as defining the suitable population

for the study;

 Composition of sample groups;

 Survey design and validation;

 Conducting the study;

 Analyzing and scoring the results.

Pfleeger and Kitchenham’s [153] suggestion slightly differs from the chosen sequence;

i.e. they suggest selecting the participants (sample groups) after the validation of the question-

naire. The present work fixes the targeted population in step a), as the choice of a target group for

notation and tool is directly related to the accomplishable objectives in our survey. It also defines

C Instantiation and Evaluation

 178

the sample groups before designing the questionnaire, because the questionnaire requires a target-

group specific language.

7.1.1 Composition of Sample Groups

The target groups on which the notation was designed are platform architects and solution

managers. The tool is hence positioned at an intersection: at the junction between engineering and

management. Both target groups need to be met. They shall both be represented in the

population. The term population denotes the complete target group of a survey. The population,

targeted by DYNO, are the system architects and solution managers in charge of service plat-

forms. In order to be able to produce results without analyzing the complete population, the sur-

vey requires suitable subsets called samples, or sample groups. To produce precise and reliable

results, the sample groups need be well-defined and well represent the population. [154]. Chal-

lenges in the choice of sample groups are among others the heterogeneity of the service platform

markets (from online games to business software platforms), different maturity of the companies,

different cultural backgrounds. The present work chose a sample group of 4 companies with

highly varied backgrounds to cater for heterogeneity:

(a) S.Chand Group33, a provider of Distance Learning as a Service from own and external

 providers,

(b) SAP AG34, a provider of business software,

(c) CAS Software AG35, a provider of CRM software,

(d) M-Engineering36 , a provider of SCADA37 as a service.

The samples chosen in this case study are non-probabilistic, meaning they are chosen out of an

accessible subset of the target population [155]. The reason for this choice is the novelty of that

concept and the resulting limited availability of target groups. Also, the analyzed data is critical

to corporate success. Therefore, companies without personal relation to the research group tend to

be restrictive with the communication of data. To live up to the challenges stated before and to

set grounds for a generalization of results, Scholten selected a subset with heterogeneous back-

grounds (Figure 49). Two of the companies are older than 25 years and established in the market

(SAP AG and CAS Software AG), one is in a seed stage but subsidiary of an established compa-

ny (S.Chand Edutech) and one is an independent start up in seed stage (M-Engineering). The

companies SAP AG and CAS Software AG have medium experience with service platforms

33 www.SChandEdutech.com
34 www.SAP.com
35 www.CAS.de
36 www.M-Engineering.de/
37 SCADA abreviates: Surveillance, Control and Data Acquisition

Dynamic Network Notation Ulrich Scholten

 179

(more than 2 years, but no market leader position). S.Chand Edutech is experienced with Internet-

based distribution of books. M-Engineering is new to the service platform business. S.Chand

Edutech is of Indian corporate culture. SAP has an international culture other members of the

sample have different nationalities. CAS and M-Engineering are companies with a German cul-

ture. As the case studies are based on a limited quantity of samples, the present work uses the

expression qualitative case study.

Figure 49: Sample group for evaluation of Dynamic Network Notation and DynoCloud.org editor.

Prior to the case studies, Scholten verified the questionnaire with a pilot group, consisting of 3

team colleagues. This preliminary study was designed to ‘help identify missing or unnecessary

questions, ambiguous questions and instructions…., focus groups also contribute to the evalua-

tion of instrument validity’ [156].

C Instantiation and Evaluation

 180

7.1.2 Survey Design and Validation

Theory offers a range of approaches to conduct surveys. Kitchenham and Pfleeger [154] catego-

rize surveys into descriptive and experimental survey designs. Descriptive designs “describe a

phenomenon of interest” [154], experimental design assess “the impact of some intervention”

[154]. Given the present work’s design-scientific nature and the objective to evaluate the im-

provements brought about through the application of artifacts, experimental design is the most

suitable. Four approaches of experimental survey exist:

(a) Concurrent control surveys: the scientists distribute samples randomly or non-

randomly into parallel groups. The survey compares the outcomes of sample groups with

and sample groups without treatment.

(b) Self-control surveys: the same sample group provides data on a situation before and

after a treatment;

(c) Historical controlled surveys: the scientists repeat similar studies with respect to con-

text and population over time to identify an evolution;

(d) Combined techniques, a mixture of several of the above approaches.

The present work chooses the option of a self-controlled study. This gives the possibility to

compare results of the same sample group before and after support by the Dynamic Network No-

tation or the DynoCloud.org-editor. In particular, the study compares design experience without

the tool with subsequent experience with tool support. Such a design provides information on

changed user experience and benefit in the two different settings. In consistence with the present

work’s overall research design, the survey follows an iterative approach of artifact building, in-

tervention and learning [38].

To get an initial understanding on the notation’s usability and to be able to properly set expec-

tations and to dimension design tasks in the survey, Scholten conducted the first evaluation in

form of an expert workshop with the sample group S.Chand Edutech (Section 7.2). After docu-

menting their initial planning on how to proceed with the Distance learning platform, Scholten

accompanied 1 solution manager and one platform architect from S.Chand Edutech in modeling

the platform. This procedure gave initial understanding on how the language was understood,

what introduction the sample members would need, or what results could be expected from mod-

eling. This initial experiment was still done without the editor, which was at that time still under

testing. The results were used to modify the editor and to better conceive questionnaires and ac-

companying document for the second setting. In this second setting, done with CAS Software

AG, SAP AG and M-Engineering, experts from the sample group had to model themselves,

equipped with explaining material. During the experiments at SAP AG and CAS Software AG,

Dynamic Network Notation Ulrich Scholten

 181

Scholten was physically not present. At M-Engineering, Scholten was present to discuss ideas

after the sample group had finished the modeling task.

Also in this second setting, Scholten used an iterative approach. The questionnaire-based sur-

veys started with CAS Software GmbH. Including the lessons learnt, it continued with SAP and

M-Engineering in a modified approach.

7.2 Case Study Setting I

Parts of the evaluation results from this case study setting were published and discussed at the

International Conference on Service Oriented Computing and Architecture 2011 in Irvine [157].

The preliminary notation used dashed lines to display influences and continuous lines to represent

transactions. Circles with an included plus sign represented inactive control mechanisms. Also,

the base value did not have a representation yet. Another difference was that in the applied pre-

liminary version, influence targets were signed (prefix + or -). As the editor was not yet imple-

mented, all modeling was done with PowerPoint (Figure 50).

The subsection continues with a description of the necessary preparations (Subsection 7.2.1).

It then describes the experimental procedure (Sebsection 7.2.2). Its main part (Subsection 7.2.3)

describes the findings, summed up by the subsequent conclusion (Subsection 7.2.4).

7.2.1 Preparation

Pursuing an iterative research process, the research project required, apart from critical discus-

sions in the research community, interventions with industry to gather feedback on the language

expressiveness and effectiveness, as well as on the achievable quality of the produced models.

The following case study took place in 2011 at the S.Chand headquarters in New Delhi, India. It

was the first intervention in the market other than the feedback, gained with SAP Research. The

case study took place in form of a modeling workshop with two experts from S.Chand Group.

That was prior to the accomplishment of the editor and required the preparation of all major Dy-

no shapes in Microsoft PowerPoint. Scholten participated in the workshop and the modeling pro-

cess to gain first hand understanding of Dyno’s strengthes and shortcomings.

C Instantiation and Evaluation

 182

7.2.2 Experimental Procedure

Goal was to evaluate the suitability of the Dynamic Network Notation in a first face to face ses-

sion and to conduct potential improvements before starting the second round of experiments. The

sample group consisted of 2 experts. One expert was in charge of the platform based-distribution

concept and contributed the commercial view. The second expert was an IT specialist with expe-

rience in Internet-based distribution gained at the computer technology corporation Dell Inc38.

In the beginning of the workshop, the experts presented their platform design views, docu-

mented with a structured list of required technical features. Afterwards, Scholten gave two hours

of introduction into service platforms, based on structured presentation of successful service plat-

forms, i.e. by Salesforce, Netsuite as well as on several smaller e-Learning platforms. Thereafter,

he gave one hour of introduction into the Dynamic Network Notation and the editor, which he

had prepared with MS PowerPoint. Then they modeled together for two hours, while discussing

and evaluation the decisions and commenting on the notation.

Scholten interviewed the two experts after the experiment and produced a summarizing docu-

ment. Given the open character of such a workshop, the setting would be less useful at the end of

a research project when searching for final assessment. Interviews and discussions provided

feedback for subsequent improvement, prior to conducting the questionnaire-based surveys.

S.Chand was deliberately chosen for this experiment. One reason is the experience with Inter-

net-based distribution. The other is its strength in the market. S. Chand Group is the second larg-

est academic publisher in India39. This market position endows S.Chand from the beginning with

an existing large customer group, big enough to justify solutions with third party service provid-

ers. Through several initiatives the company tries to stay in phase with the rapid growth of Inter-

net adoption. India accounts for more than 100 Million Internet users in 201040. Internet access of

students is still growing, supported by many government and private initiatives and fueled by

many Internet Cafés [158]. In order to capitalize on this growing segment, S.Chand Group creates

the subsidiary S.Chand Edutech (SCE)41 assigned to design a service platform that

 scales with growing quantities of users and providers as well as seasonal effects

through rented infrastructure, without the need for stockpiling of IT infrastructure (A);

 leverages on S.Chand’s existing position in the academic text book sector in terms of

width and depth of portfolio and in terms of distribution channel (B);

 benefits from the existing multitude of e-Learning development companies (C) ;

 offers content that responds to a diversity of academic classes (D);

38 Homepage of Dell Inc. India: http://www.dell.co.in/
39 S.Chand Group Homepage, http://www.schandgroup.com/, retrieved 13.08.2011;
40 Internet World Stats Homepage, http://www.internetworldstats.com /asia/in.htm, retrieved 13.08.2011;
41 S.Chand Edutech Homepage, http://schandedutech.com/, retrieved 02.03.2013.

Dynamic Network Notation Ulrich Scholten

 183

 works around shortcomings in national telecommunications infrastructure through

placing own servers into university environments. The company manages the servers

through TCP/IP based fileserver access and synchronizes overnight. On the university

side, the servers are connected to the University LAN. The university only has webs-

erver access (E);

 assures suitable quality levels (F).

7.2.3 Findings

Before starting to model, the experts had already made and documented design ideas verbally,

without any tool support. They compare their initial ideas with those produced with Dyno

throughout the modeling process. The experts started the development of the model from the

beginning. The model as depicted in Figure 50 is the result of an iterative collaborative modeling

process within the workshop. As with their core business, SCE targets students as primary con-

sumers. The experts modeled the Dyno model as shown in Figure 50. The upper case letters fol-

lowed by a number associate each element to the above letters A-F. When designing the model,

cooperation with the partners (e.g. universities, or initial content providers) existed, but it was not

embedded in the context of a platform-based concept. A first challenge was the base value ar-

rangement. Before modeling, the experts thought about a Credit-Card based purchase process or a

voucher sale within the universities. The Dyno-based modeling made them neglect this option, as

it was not reverting to an established distribution channel. To build on an existing channel, the

company chose the rented book shelves, which they modeled as base value 1. Secondly, the ex-

perts initially conceived a production process through outsourcing on assignment (dependent

participants in the control area). However, the notation allowed them to model an alternative set-

ting with independent providers in the influence areas and thus to create the complementarity

loop. Experimenting on divisions, they decided to place the service platform on a scalable IaaS,

provided by a third party, as DYNO showed that their own infrastructure would create a bottle-

neck within the important demand-sided causal loop. DYNO revealed a second bottleneck in the

non-scalable server architectures within the universities. For the time being however, the experts

accepted this bottleneck in a trade-off for better network performance to the students.

C Instantiation and Evaluation

 184

Figure 50: S.Chand Edutech platform design

Figure 50 reproduces the platform model as developed within the workshop. Some arrange-

ments, e.g. activities without inflows from participants or participant groups are semantically

questionable. However this reflects the modeler’s way of thinking and is therefore reproduced

unchanged in the present work.

Modeling & Analyzing Demand-side Base Values

Section 2.7 highlighted the necessity of an available base-value as prerequisite to incite a network

effect. The experts identified and modeled three base values to set off this initial causal loop on

the demand-side. Then, they aggregated base values through a merging gateway.

 Electronic content provision - SCE decides to offer digitalized versions of a significant

amount of their academic books through the e-Learning platform. The experts mod-

eled content provision as an activity (Figure 50, B1).

 Take-over of an established e-learning developer – In order to start off their business,

SCE took over INGENATIC, a European Multimedia company with an existing port-

folio of web-based academic distance learning content. The experts modeled this as

Dynamic Network Notation Ulrich Scholten

 185

dependent participant within a specific division (Figure 50, B2) and supplying the de-

ploy services activity (Figure 50, B7) to stimulate the consumer-sided network effect

through a critical mass of content.

 Distribution in book shops – To reach the students, SCE decides to use S. Chand

Group’s existing book-shelves in the nation-wide network of book resellers. Non-

transferrable time-limited subscription vouchers will be sold through these channels

(Figure 50, B3). The division group symbol describes the availability of a non-

quantified amount of book-shops. If the quantity was invariant and known, it could be

added through a comment. This modeling fragment showed that modelers left the lim-

its of IT-infrastructure located activities to integrate rented book-shelves into Dyno’s

line of thinking. Being controlled by SCE, allocating the bookshelves within their con-

trol area is correct.

 Integrating through a Gateway – The modelers aggregate the positive influences of all

previously described values (1-3) within the Gateway (Figure 50, B4) to take effect on

(potential) users. Competitors weaken this accumulated positive impact. Consequent-

ly, the competitor group’s influence carries a negative prefix.

The activity provide e-content (Figure 50, B1) and the participant INGENATIC (Figure 50,

B2) act indirectly through the activity deploy services (Figure 50, B7). The modelers positioned

the target users into the influence area. They applied the symbol for participant groups to empha-

size that they do not speak of explicit users, but of a non-quantified group (Figure 50, B5). Once

the first users subscribe, the initial loop – a causal loop (B6) – is started off. Once the quantity of

supplied content exceeds the threshold for network attractiveness through the activity provide e-

content (Figure 50, B2) and through the participant INGENATIC (Figure 50, B2), the consumer-

sided network effect comes into force.

Modeling & Analyzing Supply-side Network Effects and Base Values

During the time of the experiment, SCE was piloting with a handpicked selection of initial third-

party suppliers to gather experience for a subsequent opening up to a multitude of providers. To

remain valid during the two stages of ramp up, the experts modeled all providers as one group

(Figure 50, C1). Becker, Rosemann et al. [159] call such robustness against changes over time

economic efficiency. Having set off the dynamics on the demand-side, the suppliers are already

attracted by the volume of users, promising potential for turnover (Figure 50, C2). SCE strength-

ens this in having the permission to using S.Chand’s copyrighted material (Figure 50, C3) and a

plentitude of design templates, provided by INGENATIC for ease and efficiency in development

and coherence in look-and-feel (Figure 50, B2). As the suppliers deploy services (Figure 50, C4)

C Instantiation and Evaluation

 186

in reaction to the stimulus (Figure 50, C2), it creates a complementarity loop [8]. The comple-

mentarity loop in conjunction with the demand sided loop form a cross sided loop, where the

deployment of services (Figure 50, B7) and the subscription of users strengthen each other in

reciprocity.

Modeling & Analysis of Complementary Portfolio Contributions

SCE decided to start off with technical contents. Still there is a multitude of academic classes to

map, with differences in expectations and orientation, depending on the university. It starts off

with ready-made courses to meet all content requirements. Also would it be impossible from an

expertise, time and budget perspective to fill the missing spots. SCE’s choice is to delegate value

creation into the supply chain. The solution, again supported through SaaS providers is as fol-

lows:

Provision of sharable content objects (SCO) and of sequencing manifestos – Instead of

providing ready-made e-Learning courses, SCE demands the SaaS providers (Figure

50, C1) to provide fine-granulated SCOs. SaaS providers also provide IMS-

manifestos, suggesting context related sequencings of reusable SCOs. XML-based

IMS manifestos reference the included SCOs and their respective sequence of invoca-

tion42. E-Learning can be considered a network of SCOs, or in SOA terminology a

composite service. Typically, the initial IMS-manifesto comes from the SCO-

providers, giving a first suggestion for a course. Alternative manifestos can be created

e.g., through lecturers, adapting the existing content base on their requirements, com-

plemented through additional SCOs. To ensure the interoperability of manifesto and

SCOs, SCE needs to demand compliance to the respective Sharable Content Reference

Model43 as programming model through their platform service provisions.

Modeling & Analyzing Scalability Requirements

With respect to the fast growing market, SCE decided not to invest into a proprietary IT infra-

structure, but to build an e-learning service platform on top of an Infrastructure-as-a-Service

(IaaS), provided by a third party provider. The experts modeled the IaaS as a technically scalable

division (Figure 50, A1). Indian internet connectivity is of good quality in the metropolitan areas,

but many university locations still suffer from a limited bandwidth. Working around this short-

coming and benefiting from the existing University-WLANs, SCE places proprietary ‘satellite

servers’ into the Intranets of partner universities (Figure 50, E1). The servers are synchronized

42 IMS standard, http://www.imsglobal.org/content/packaging/, retrieved 13.08.2011
43 SCORM reference pages page by the US government’s advanced distributed learning department,

http://www.adlnet.gov/scorm/, retrieved 02.03.2013

Dynamic Network Notation Ulrich Scholten

 187

through with the central server. The downside of this approach is the lack of scalability in the

finite divisions on the university campuses. The experts modeled this through scalability: boole-

an = false in the subdivision group of satellite servers. Through using the symbol of a division

group, they show that commercially, the project can grow with any additional campus connected.

The lacking infinity symbol pinpoints a potential bottleneck, as the servers are a non-scalable

potential bottleneck within a loop.

Modeling & Analyzing Control Points & Mechanisms for the PaaS Ecosystem

Working with external provisions implies a new paradigm of quality control and of enforcement

for SCE. There are many possible control points and corresponding sets of control mechanisms in

the model. The remainder of this subsection exemplifies one control mechanism on a transaction,

one mechanism on an influence and one on an activity. This preliminary version of the language,

concretized through MS PowerPoint, was not able to be more specific about the availability of

control mechanisms as through a Boolean true of false information.

 Influence-Control - In this scenario, the experts place control mechanisms on an influ-

ence (Figure 50, C2). To amplify its impact on the influenced suppliers, they applied

informative control and motivational control (Figure 50, F1). The experts discussed

the specific mechanisms of informative control. First, to inform the (potential) supplier

about the quantity of users subscribed in order to increase the attractiveness. Second,

they suggest customized information per SaaS provider on user preferences to moti-

vate the suppliers to optimize their offers on the user requirements.

 Transaction-Control – As the transaction C4 points into the control area (Figure 50,

C4), the target-side is controlled). In the modeled solution, a restrictive control mech-

anism verifies through an automated routine the suitability of the provided service. I.e.

it verifies compliance with the stipulated programming model (SCORM). Incompliant

services are rejected.

 Activity Control – Consecutively, the modelers apply sanctional control in Figure 50,

F3. In example, this give the platform operator away to undeploy services that are con-

tinuously rated poorly through the reputation systems (market-regulative control).

7.2.4 Conclusion

In the preliminary research stage at the time of the experiment, DYNO still showed scope for

further refinement with respect to expressiveness and well-formedness. The signed targets of

influences (plus, minus) were a first subject of discussion. Whether an influence or an aggregated

influence has positive impact may change over time. To produce models that are robust over

time, the release of Dyno, published in the present work abandoned the signs at the influence

C Instantiation and Evaluation

 188

targets. Following suggestions by the experts, the version of Dyno published in this work visually

represents the activation of the base-value attribute through a β–smbol. The modeling desire of

voucher-based sales in SCE’s book-shops led to a loosening of the requirement, that an activity

necessarily is a technically enabled place for interaction.

The experts also discussed whether to change from a binary consideration of a base value to a

qualitative. The present solution however did not integrate this proposal due to two reasons. First,

a quantification of a base value is difficult to achieve, due to its dependency on various aspects of

attractiveness. Second, being quantitative would weaken the models robustness over time.

Unresolved criticism lies in the binary consideration of scalability and base value. Being able

to quantify those would allow for improved infrastructure dimensioning. Scalability is a subject

to ongoing research. During the time of the publication of this thesis, no suitable metric on scala-

bility was available. Those issues are subject to further research.

7.3 Case Study Setting II

This second case study setting is based on a questionnaire. It was conducted in summer 2012

(first company) and in winter 2012 / 2013 (2nd and 3rd company), after the lessons learnt from the

first case study were implemented. Also the editor was already available.

The following subsection starts with a substantiation of the questionnaire design and the exe-

cution of the study (Subsection 7.3.1). Then it describes the experimental procedure (Subsection

7.3.2), followed by a description of the findings in the three consecutive interventions (Subsec-

tion 7.3.3). After another iteration following the investigation at the first company, the investiga-

tions at the 2nd and 3rd company allow a final evaluation at of language and editor. Final results in

the context of the present work represent the actual research and implementation achievement

submitted in the frame of this thesis. The Action Design Research method theoretically is an on-

going process of cycles , interweaving theory generation, design and intervention respectively

evaluation, and thus contributing to an iterative refinement of the artifact [38]. The section closes

with a conclusion (Subsection 7.3.4).

7.3.1 Preparation

For the design of a questionnaire Kitchenham and Pfleeger [160] suggest to prepend research of

comparable studies to build on past experience. As language and tool are new artifacts, no previ-

ously acquired data is available. However, Scholten reverted to questionnaire design by Wittern

and Zirpins [161], as well as Lenk44, both evaluating modeling and engineering tools for service

44 A.Lenk, unpublished work in progress, Karlsruhe Institute of Technology.

Dynamic Network Notation Ulrich Scholten

 189

composition. Those studies gained experience on assessing tools and thus contributed to the ques-

tionnaire structure.

The questionnaire follows a series of design principles: It starts with an introduction of re-

search group and purpose of the survey. The questionnaire also describes how the acquired data

will be treated to create an environment of trust among the respondents [162]. The questionnaire

mainly builds on closed questions mixed with few open questions. Closed questions allow quick

response and thus promise a high response rate. They are easier coded for contexts of quantitative

analysis or direct comparison [162]. The latter is decisive for the prioritization of closed ques-

tions in this thesis. Open questions elicit qualitative data but may also discourage, as they require

more time to respond. It is also more difficult to analyze answers to open questions than those

given on close questions [162]. The questionnaire allocates open questions, when explicitly ad-

dressing the respondents’ creativity, e.g. when asking for suggestions of improvement. To under-

stand the acquaintance of the respondents with the subject matter, a question of their familiariza-

tion with modeling software prepends the subject-oriented questions.

The questionnaire’s objective is to verify whether language and editor respond to the research

requirements and confirm the research hypotheses. To slowly introduce the respondent into the

subject without deterring him from accomplishing this task to the end, the questionnaire follows a

sequence of questions from general to particular and from factual to more abstract [162]. Given

this frameset, it is not possible to sequentially step through the research requirements respectively

through the research hypothesizes. The survey faces another challenge with respect of data elici-

tation. As the editor is a concrete implementation of the language, it is difficult to differentiate

between pure editor and pure language features. As the main differentiating point is the quality of

implementation of the editor’s graphical user interface, the questionnaire specifically starts with

this. After that, the questionnaire assesses the respondent’s experience with and his assessment of

the language. It starts with a request for general evaluation of the comprehensibility of the Dy-

namic Network Notation and its helpfulness to understand dynamic networks around platforms.

Following the sequence of research requirements and hypotheses, the questionnaire walks

through structural areas, process elements, causal loops and then control mechanisms. Given the

importance of causal loops and network effects in the context of this thesis, the questionnaire

dedicates a small visually separated block to causal loops. The questionnaire uses the term dy-

namic loops, a term used in preliminary stages of the model development, but replaced by the

term causal loops. The term causal loop implies causality and ensures unambiguousness. In con-

trast, the term dynamic led to confusion during discussions, as addressees interpreted the word in

diverse ways (e.g. synonymous to flexible or volatile). The subsequent block requests the re-

spondent’s feedback on control mechanisms from different angles, e.g., suitability of suggested

mechanisms, limitation of freedom of decision making, usefulness. Base value and scalability

receive individual sections.

C Instantiation and Evaluation

 190

To evaluate the language’s expressiveness and effectiveness and the achievable efficiency of the

models, the questionnaire verifies whether it can produce models which fulfill Becker, Rosemann

et al.’s [159] quality guidelines of modeling. In particular, it verifies whether Dyno helps the re-

spondents to produce models which respond to the following quality criteria [159]:

 Correctness – structure and behavior of the Dyno models are consistent with the real

world;

 Relevance – Dyno represents all relevant elements and relationships from the real

world;

 Economic efficiency – Dyno models are robust, meaning it remains relevant over time,

even as quantities of subscribed users or service evolve;

 Clarity – Dyno models are clearly understandable and not overloaded;

 Comparability – Design alternatives are comparable as they follow the same grammar.

Figure 51: Comparison of research requirements, hypotheses, solution design and case study questions

Dynamic Network Notation Ulrich Scholten

 191

The questionnaire applied a non-dichotomous ordinal scale to structure the respondent’s opinion.

As the modeling with language and editor was done by all groups in teams, each team represents

one respondent and fills out one single questionnaire. An ordinal scale arises from rank ordering

[163]. In contrast to a nominal scale (relation of equivalence), the ordinal scale incorporates a

more than or less than relationship [164].

The current questionnaire applies a non-dichotomous approach, giving more than one choice.

The ordinal scale documents the respondent’s ranked opinion with

 Strongly agree (+2),

 Agree (+1),

 Disagree (-1),

 Strongly disagree (-2).

To check plausibility of answers, in two cases the questionnaire carries inverted questions, i.e.

the respondent is asked to comment a negative instead of a positive effect, e.g., “… is unneces-

sarily limiting my scope of decision making.” For these questions, the analysis inverts ranking

and numeric weighting. To impose a respondent’s decision towards agreement and disagreement,

the questionnaire leaves out the undecided option (+/-0). The prepended assessment of the re-

spondent’s experience with modeling remains dichotomous. The goal of this pre-assessment is to

make sure that the respondents have a basic experience with modeling.

7.3.2 Experimental Procedure

The case study at CAS Software AG was taken in July 2012. Based on the experience in that case

study, the author complemented the questionnaire with additional and more detailed questions on

structural areas and process elements. The case study at M-Engineering was conducted in No-

vember 2012, the study at SAP in February 2013.

CAS Software AG provided one solution manager to participate in the modeling experiment.

No platform architect was present. The solution manager received detailed documentation on

notation and editor, but no training. The solution manager modeled a scenario which he already

conceived beforehand without notation and tool support. The results were moderate (see Subsec-

tion 7.2.3). In consequence, Scholten modified the case study setting slightly and prepended one

hour of training for one participant of the remaining groups and extended the questionnaire.

C Instantiation and Evaluation

 192

Figure 52: Overview of group composition of goals of SAP and M-Engineering

SAP modeled with the Dynamic Network Notation and editor in the frame of their design

workshop on the service platform solution to SAP’s Netweaver product45. The SAP workshop

group consisted of three solution managers, one platform architect (called SAP product manager),

one Design Science Coach and three workshop moderators. The company’s goal was (a) to cap-

ture and group existing inhouse software solutions, suitable for such a concept, (b) to correlate

the software solutions with suitable target user groups and (c) to identify, model network effects

and suitable control mechanisms (Figure 52). Prior to the modeling with Dyno, the group already

had several sessions, where they worked without the tool. The group jointed worked and dis-

cussed on one solution. One moderator served as modeler. The modeling progress was shared

through an overhead projection.

M-Engineering plans to set up a service platform for SCADA services. Those SCADA ser-

vices are in charge of surveillance, control and data acquisition and analysis of manufacturing

processes. M-Engineering is a new entrant into the platform business, coming from the process

analysis and control side. The company’s objective is to complement their on-premise solutions.

It intends to deploy existing solutions as a service, using Siemens’ Web-enabled SCADA

Toolsuite WinCC/Web Navigator46. Being too small to attract pools of third party service provid-

45 Netweaver technology platform: http://scn.sap.com/community/netweaver; retrieved 24.04.2013.
46 Siemens Win CC/Web Navigator: http://www.automation.siemens.com/mcms/human-machine-interface/en/visualization-

software/scada/wincc-options/wincc-web-navigator/pages/default.aspx; retrieved 24.04.2013.

Dynamic Network Notation Ulrich Scholten

 193

ers, the company plans to work with explicit partners on the supply side and to generate network

effects on the consumer side.

7.3.3 Findings

This subsection summarized the responses, provided by CAS Software AG, SAP AG and

M-Engineering UG. The questionnaires and the detailed answers are presented in the Appendix

in the section Questionnaire.

Modelers’ Familiarity Check

The prepended familiarity check elicited that all respondents had modeling experience.

First Iteration of Case study with CAS Software AG

The result of the first questionnaire-based case study at CAS Software AG produced an average

score of 0.46, which can be read as a weak confirmation of improvement of the situation, as

compared to modeling without tool. In the summarizing assessment, the group did not see any

improvement in platform conception after getting using language and tool. However, the team

acknowledged the improved time-effectiveness. In explicit, team did not see benefits from sever-

al of the core features of Dyno, e.g., from transactions and influences, from the areas of staged

authority, or from the possibility to model two-sided markets. The team considered the guided

suggestion of control mechanisms as unnecessary limiting of scope of decision and considered

the whole concept difficult to grasp. The appendix in Part D includes the complete questionnaire

and in answers by CAS Software AG.

Second Iteration after Modification of Study Design

The results led to the assumption that the respondents require enhanced introduction into the con-

cept. Scholten prepared the successive field studies with SAP, and then with M-Engineering with

a one hour training session for one representative per team. With a score of 1.58 (SAP) and 1.67

(M-Engineering), the results changed significantly, confirming that language and underlying the-

ory require a basic amount of introduction. The feedback of SAP and M-Engineering showed an

average deviation of 0.26 points. Although ordinal scales as used in the questionnaire only give a

relative rank order, statistical methods find successful application on ordinal scales in various

disciplines. Scores and deviation as given above and in subsequent analysis cannot be interpreted

quantitatively, but they provide qualitative trends [163]. When speaking of the respondents, the

remainder of this sub-section only considers SAP and M-Engineering, unless stated differently.

C Instantiation and Evaluation

 194

Evaluating the Main Hypothesis (MH)

The main hypothesis states that a modeling language for design of service platforms oriented on

network effects can support improved modeling outcome. The case study scrutinizes this hypoth-

esis from three angles. First it compares the situation with and without language and editor (a).

Then it considers the language’s orientation on causal loops and their control (b). It then assesses

the quality of the Dyno models (c) and the concrete language implementation in the editor (d).

a) Change of situation through the provision of the language and its concrete instantiation

(editor):

Both respondents strongly agree that notation and tool help to produce better platform de-

sign than without the tool (both +2). The respondents strongly agree as well that the tool

improves the efficiency of the platform design process as it reduces the required design

time (both +2). Also, they agree that language and tool are quickly understandable. How-

ever the respondents deviate in their weighting, leading to an averaged score of 1.5. The

improved score as compared to the results at CAS Software GmbH showed that language

and notation are not purely intuitive and require introduction. Both respondents considered

an hour of explanation for notation and editor as quick.

b) Language orientation on modeling and controlling network effects:

The present work’s main hypothesis states that a specific modeling language for design of

service platforms oriented on network effects can support improved modeling outcome.

Both groups strongly confirm the comprehensibility of Dyno during the modeling process.

They also strongly confirm they get better understanding of network effects and respective

control possibilities through Dyno. Similarly, they give strong confirmation that Dyno

helps locating or creating causal loops. Also, they confirm that Dyno helps updating one-

sided loops into two- or multi-sided loops. They thus confirm that Dyno goes beyond pure

enablement of causal loop creation, given the complexity of multi-sided loops. SAP and

M-Engineering evaluated the respective questions unanimously with full agreement

(average score +2).

c) Quality of outcome:

The questionnaire elicited whether the achievable quality of models, modeled with the

Language and the editor satisfies the requirements of Becker, Rosemann et al.’s [159]

guidelines of business process modeling.

Dynamic Network Notation Ulrich Scholten

 195

Correctness: The respondents saw the requirement of correctness fulfilled (score +1),

meaning they were able to produce one or more models, where structure and behavior of

the models were consistent with the real world.

Relevance: The respondents strongly agree that all relevant elements from the real-world

scenario find application in the model representation (both +2). The respondents agreed

that all elements and relationships, applied in and required by Dyno are necessary to

accomplish the design goals (both +1).

Economic Efficiency: The respondents consider their model as robust, meaning it remains

relevant over time, even when quantities of users or services evolve (both +1).

Clarity: The two groups agreed that the produced model was clear, understandable and not

overloaded (average +1.5).

Comparability: The two respondents agree that they can compare design alternatives on

the same business case, as they follow the same grammar (average +1.5).

d) Quality of the editor:

The two groups (SAP, M-Engineering) were in cautious appreciation with the comfort of

the editor. SAP’s main point of criticism its lack of intuitiveness. Still, an overall ranking

between agreement and full agreement on the editor features comfort of GUI and level of

modeling freedom in the editor is an acceptable result for an editor, implemented for

proof-of-concept. The two respondent groups strongly emphasize their benefit from the

editor’s guidance, based on Dyno’s grammar and resulting context-related suggestions and

restrictions. The questionnaire explicitly stated suggestions and restrictions with respect to

transactions, influences, controllable and uncontrollable activities, case-specific mecha-

nisms, areas and the implicit feedback on the modeler’s modeling intentions. Although the

questions were centered on the editor, the results support the main hypothesis (MH) on the

general benefit to the modeling target group of a language which guides through context

related suggestions and restrictions. The conclusion is viable as the editor is the concrete

implementation of the language’s grammar (complemented by GUI-features).

Respondents’ Evaluation of the Dynamic Network Notation with Respect to the Structural

Distribution (H1)

Hypothesis 1 (H1) states that a language providing the structural perspective of areas of staged

authority and of structural divisions enables better structuring and improved exploitation of

stakeholding power. The respondents agreed (average score +1.3) to the contribution of added

value through areas of staged authority. The areas allowed them to better position their modeling

C Instantiation and Evaluation

 196

elements (both ranked +1) and supported their understanding on the dependency of structural

position of elements and their area-dependent controllability (both +2). Also they fully agreed to

the contribution of division groups for repeated areas of similar behavior (both +2). The two

respondents strongly deviated in the evaluation of individual divisions. Whereas SAP disagreed

with their contribution (-1) agreed M-Engineering strongly (+2).

Respondents’ Evaluation of the Dynamic Network Notation with Respect to the Procedural Per-

spective (H2)

Hypothesis 2 (H2) states that a language providing the procedural perspective of interrelated

specific and unspecific participants as well as activities is able to model and improve causal loops

and related relationships in and around platforms. Both respondents unanimously fully agree

(both +2) that Dyno’s elements (activity, participant, participant group, transaction, influence)

enabled them to express the interplay of relationships within a platform. They also fully agreed

that Dyno helped them to locate and create causal loops. They also confirmed that Dyno helps to

connect 2 or more causal loops into interconnected loops (both +2). Given the complexity of

cross-sided loops this emphasizes the level of ease felt by the respondents when working with

Dyno.

Also the respondents were in full agreement that Dyno allowed them to select optimal nodes

for placing base values (both +2). When asked whether Dyno allowed them to evaluate strong

base value candidates or whether they still need to create suitable base value, the score was

slightly lower (average + 1.5). When being asked whether Dyno could help them to judge

whether – in view of the base value situation – it makes sense to enter the platform business, both

unanimously agreed with a score of +1.

Respondents’ Evaluation of the Dynamic Network Notation with Respect to the Allocation of

Control Mechanisms (H3)

Hypothesis 3 (H3) states that a language that adds control mechanisms onto its elements,

allocating managed self-organization can model options to turn causal loops into network effects.

The two respondents produced a superimposable set of answers with an average score of 1.4.

In explicit, the respondents agreed that the language always provided the most suitable control

mechanisms and that it helps with running services of improved quality. They strongly agreed

that the context-specific suggestion of control mechanisms helps to design a platform, which

influences growth of consumer and provider ecosystem and which helps to design a platform that

focuses 3rd party services that fit into the corporate strategy. The respondents strongly confirmed

that the suggested control mechanisms allowed to completely model the corporate platform.

Dynamic Network Notation Ulrich Scholten

 197

Respondents’ suggestions for improvement or additional features

M-Engineering commented that the notation and tool provide a result which is targeted and

which goes further than what was achieved without the tool. The respondent suggests embedding

the process of modeling into a consultant-moderated workshop “which is capable to lead through

the first steps or better the use of the relevant information by specific question / answer session.

Consequently better results through a common workout”.

As improvement for the editor, CAS and M-Engineering suggested to include tooltips for the

individual elements in the shape repository. All suggested the opening of the modeling canvas

with pre-allocated noise, influence and control areas. Those two improvements need to be includ-

ed in a future release of the editor, as they require modification in the ORYX-framework.

7.3.4 Conclusion

This subssection summarizes the finding revealed through the second case study. The main Hy-

pothesis MH states that a modeling language targeted at harnessing network effects around

service platforms can support platform design through guided modeling, in particular by provid-

ing structural elements, process elements and the allocation of service management mechanisms.

In result of the iterative research process, language and editor accomplish all aspects of plat-

form design and service management claimed in the hypothesis; i.e. the case study confirmed

that:

 The Dynamic Network Notation either improves the starting position for platform de-

sign or supports improvements in platform design as compared to the situation without

language and tool.

 The Dynamic Network Notation helps solution managers and platform architects un-

derstanding and locating causal loops, which can lead to network effects.

 The quality of the designed Dyno models is high with respect to correctness, rele-

vance, robustness, clarity and comparability.

Throughout the case study the editor also received positive acclaim, yet with suggestions for im-

provement.

The case study further substantiated the three subhypotheses: First, Sub-hypothesis H1 states

that a language providing the structural perspective of areas of staged authority and structural

divisions enables better structuring and improved exploitation of stakeholding power. The re-

spondents confirmed this claim. Second, Sub-hypothesis H2 claims that a language providing the

procedural perspective of interrelated specific and unspecific participants as well as of their inter-

action in and with the platform allows for modeling improved causal loops and related processes.

C Instantiation and Evaluation

 198

H2 received strong endorsement from the respondents. Third, Subhypothesis H3 states that a

language, which adds control mechanisms onto its elements, allocating managed self-

organization, can model options to turn causal loops into network effects. This subhypothesis

finds the respondents’ consent, as well. In summary, the case study fully validated all stated hy-

potheses.

The overall confirmation of the hypotheses also proved the iterative research design’s suitabil-

ity: The last iteration produced enhanced results as compared to the expert workshop with

S.Chand Edutech (Section 7.4), where several inconsistencies and weak robustness of the models

could be eliminated and as compared to the study at CAS which took place without prior training

of the experts.

Yet, the omitted evaluation of conceptual model, analysis environment and pattern language

require explanation: Both field studies focused on evaluating the Dynamic Network Notation as

well as its editor, which base on the conceptual model elicited in Chapter 4. As Dyno represents

reality in a semantically and syntactically correct way, the underlying conceptual model is conse-

quently correct as well and does not require further evaluation. Moreover, the field studies did not

explicitly evaluate Dyno’s expressiveness with respect to subsequent analysis. In this regard, the

prototypic implementation of the analysis environment (Section 6.3) already provided the exem-

plary proof of concept.

Finally, the thesis complements the Dynamic Network Notation with a pattern language based

on building blocks of structured experience. These patterns themselves require continued and

iterative optimization, which exceeds the timeframe of the present work. Consequently, the pre-

sent work speaks of drafts rather than final patterns, indicating that these patterns shall be subject

of further optimization throughout the coming years. As highlighted in Chapter 8 the elaboration

of patterns remains a path for further research. As recommendation, the suggested pattern reposi-

tory might be used as means to support this evolution. Its rules of coordinated collaboration

themselves may evolve during the iterative optimization process.

Dynamic Network Notation Ulrich Scholten

 199

D Conclusion

8 Summary and Discussion of Contributions

The emergence of service platforms and their opening to third party service contribution as well

as to degrees of self-organization on the consumer side brought up new challenges to existing and

future platform operators. A service as understood in the present work stands for any kind of de-

ployed software provided on demand. The environments, federating such services are referred to

as service platforms. The increased autonomy of suppliers and consumers and resulting network

effects increase the complexity in the management of such platforms. The operators are well

aware of the opportunities of such effects, particularly the desired strong growth of service con-

sumption and provision. But they also see the risk of failure due to loosing influence on quality of

service on the one hand and the danger of unachieved growth or rapid collapse of the consumer

base due to negative network effects.

These opportunities and threats lead to the requirement of theory and design support, enabling

platform architects and solution managers to design platforms that are oriented to harnessing

network effects. In response to this requirement, the present work states the hypothesis that a

modeling language, focused on harnessing network effects around service platforms can support

platform design through guided modeling. Related sub-hypotheses emphasize three dimensions

of solutions that are required: First, the dimension of structural elements: helping to allocate the

different participants within and outside the platform’s ecosystem in function of the degree of

authority which the platform operator can exert on them. Second, a procedural dimension: help-

ing to represent the involved participants, as well as their various types of relationships and inter-

actions. Lastly, the control dimension: helping to choose and allocate suitable control mecha-

nisms to ensure quality of service without suffocating self-organization.

The present work introduces and derives a set of artifacts, the Dynamic Network Notation,

validating this main hypothesis and its sub-hypotheses. These artifacts utilize, adapt and structure

knowledge on causal loops and targeted network effects, originating from system, control and

dynamic market theory and applied to service platforms. The main contributions of this thesis

embrace the Dynamic Network Notation and its underlying model. They build on the knowledge,

gained through a series of surveys and endowed with related theory. In addition, the present work

proposes a language for service platform patterns and a coordinated, yet community-driven

method to accumulate a pattern repository, both supporting solution managers and platform archi-

tects with building blocks of reference solutions retrieved from best practice. Finally, the thesis

introduces the DYNO editor, an exemplary instantiation of the language, accessible at

www.dynocloud.org.

D Conclusion

 200

8.1 Critical Acclaim

The present thesis emphasizes the importance of network effects for platform success and ex-

plores their implications on platform design and service management. Explicitly, the present

work advances the state-of-the-art by providing the Dynamic Network Notation and the dedicated

service platform pattern language. Notably, the representation of network effects around service

platforms and the related control mechanisms do not find consideration in related graphical mod-

eling languages Service Network Notation [26, 27], Service Network Modeling Notation

(SNMN) and e3controls [29].

Conceptual Model - The conceptual model conveys the semantic backbone and the functional

design requirements for the Dynamic Network Notation. It consists of three major groups: struc-

tural elements, process elements and control mechanisms for service management: (a) Structural

elements consist of areas of staged authority, i.e. the control area, where the platform operator

has full and prescriptive authority, the influence area, where he can influence the ecosystem

players and the noise area for individuals, groups and legal entities, which are not influenced by

and not part of the platform’s ecosystem (but which can affect the ecosystem).

(b) Process elements include nodes and edges. Nodes describe the activities on the platform or

players active on and around the platform. The players can be positioned in the control area (e.g.

departments of the platform operator) in the influence area (e.g. suppliers or customers), or if

they are outside the platform’s reach, in the noise area (e.g. competitors or neutral communities).

They can be individual players, called participants, or unspecific groups call participant groups.

Edges are either transactions, which transfer a value from one node to another, or influences,

which influence participants or participant groups in the influence areas. Influences can be

merged through merging gateways. Influences, participant groups, transactions and activities can

form causal loops of reciprocity, which if successfully implemented in the context of its ecosys-

tem, turn into network effects. (c) Control mechanisms allow for service management on nodes

and edges within the control area. Control mechanisms allow service management to exert con-

trol in diverse specificities. The present work differentiates between enforcing and incentivizing

mechanisms. Enforcing mechanisms are prescriptive control, restrictive control and sanctional

control. Incentivizing mechanisms are market-regulative control, informative control and motiva-

tional control. Control mechanisms turn causal loops into control loops, giving the platform op-

erator possibilities to interfere.

Dynamic Network Notation - The Dynamic Network Notation (Dyno) adopts its semantics from

the constructs of conceptual model. Likewise, the meta-model is based on functional design re-

quirements, derived from the conceptual model. The meta-model formulates Dyno’s abstract

Dynamic Network Notation Ulrich Scholten

 201

syntax through production rules, communicated in Unified Modeling Language (UML), in con-

junction with constraints described in Object Constraint Language (UML). The notation explicit-

ly comprises a morphology to represent structural and procedural elements, as well as control

mechanisms. The Dynamic Network Notation represents, apart from controllability and applied

control mechanisms, two important attributes: scalability of technical environments and base

values, representing the platform’s value proposition and expected to incite network effects. Dy-

no’s meta-model explicitly allows the inclusion of additional attributes in concrete grammar im-

plementations. As the notation addresses solution managers and platform architects in charge of

designing service platforms, representation and grammar are conceived in a way that they address

equally modelers with a business as well as a technical background. A Dyno model exhibits the

modeler’s specific view, called the protagonist view. Consequently, a Dyno model will look dif-

ferent when modeled from the perspective of a different company, even when it models the same

situation.

Service platform pattern language - Platform service management patterns are reusable building

blocks of structured experience, helping the modeler to revert to best practice solutions. They

increase the effectiveness of modeling with regard to modeling the right solutions. Therefore, the

present work formulates a pattern language. A pattern in this language consists of structured,

descriptive text and a paradigmatic Dyno model answering the specific problem. Each pattern can

be atomic, or include one or more patterns. The present work suggests several draft patterns, re-

trieved from various surveys. The thesis further provides a coordinated community-driven pro-

cess to produce patterns for a pattern repository. That process considers and handles all elements

of the pattern language as services allowing the handling of human and non-human contributors,

similarly. The coordinated community driven process includes a process model for collaborative

pattern composition as well as a coordination process for automated service binding and the

management of dependencies between individual patterns and subsets. As a result, the integrative

collaboration and coordination model allows for quality control through explicit approval pro-

cesses and defined collaboration processes.

DYNO editor - The Dyno grammar and subsequent analysis have been instantiated with the DY-

NO editor. The DYNO editor embraces two functionalities; model design and model analysis.

The model designer implements the notation’s concrete syntax and concrete morphology through

a stencil set and plugged-in runtime constraint and layout processor within the ORYX frame-

work. The model designer includes a shape repository, accommodating the Dyno structural and

procedural elements, a modeling canvas and a property configuration panel, allowing for config-

uring context specific attributes. Tested in field studies, the model designer verified the hypothe-

D Conclusion

 202

ses: In confirmation of sub-hypothesis 1, the provisioning of the structural perspective of areas of

staged authority and of structural divisions succeeded in enabling better structuring and improved

exploitation of stakeholding power. Validating sub-hypothesis 2, the field studies confirmed that

the procedural perspective of interrelated specific and unspecific participants as well as of partic-

ipants’ (inter-) activities on and with the platform allows improved modeling of causal loops and

related processes in and around platforms. Lastly, it validates sub-hypothesis 3, confirming that

the control mechanisms allocating managed self-organization on the Dyno elements, allows for

modeling design options for turning causal loops into network effects. The model analyzer, in

turn, allows for analysis of Dyno models, helping to improve their efficiency and effectiveness.

The analyzer has a modular design and can accommodate plug-ins which perform specific ana-

lyzes. Providing a Dyno model and its graph, the plug-ins allows for a broad range of analysis

including graph-theoretical exploration.

The present work develops artifacts for the specific organizational context of service plat-

forms. Intentionally, the thesis does not follow the classic stage-gate approach as suggested by

e.g., Hevner, March et al. [33] or Peffers, Tuunanen et al. [45]. It rather pursues an iterative ap-

proach of design, discussion or prototypical application and refinement as common in Design

Thinking [37]. This approach brings elements of action research into the design scientific meth-

odology and is referred to as Action Design Research [38]. The artifacts underwent a series of

refinement cycles, through experimental modeling of real-life scenarios and discussion in re-

search teams, critical discussion at academic conferences, as well as through field studies. Two

final case studies freeze the status at the end of the research project and thus provide final valida-

tion to the hypotheses and substantiate the applicability of the developed Dynamic Network No-

tation to modeling service platforms. The case studies confirmed the expressiveness and effec-

tiveness of the language, able to produce models that are not overloaded and still consistent with

the real world as consequence of targeted abstraction. The models are also robust to change of

parameters. The limits of such an iterative, design scientific approach relate to the fact that it does

not produce per se generalizable results, but classes of solutions for specific contexts. The fact

that the language is able to represent all major theoretical constructs found in literature back the

goal of generality. Further substantiation comes from the fact that all settings of management of

network effects by successful service platform, elucidated in an explorative analysis, can be mod-

eled with Dyno.

The produced solutions however respond to problems around service platforms and have only

been validated in this context. In what respect the findings and the Dynamic Network Notation

can be applied other fields, e.g., product-based businesses, exceeds the scope of this work and

requires further research.

Given the novelty of service platforms and related concepts and theory, future evolution of

best practice and technology, as well as of related theory is predictable. The present work re-

Dynamic Network Notation Ulrich Scholten

 203

sponds to this with a language meta-model, allowing complementation of attributes, while re-

maining compliant to the specification. It also answers with a concept for a coordinated but

community-driven pattern repository, designed to rapidly embrace emerging best practices. The

iterative Action Research Design method allows the provision of an academic frameset for such

an evolution.

8.2 Outlook and Future Work

Based on the generated results, the present thesis opens four potential paths for future research:

A first path of further research relates to multi-layer categorization of control mechanisms. All

developed mechanisms could be further refined through additional layers. For example, the

mechanism of motivational control could be split into reputation systems and recommender sys-

tems. This new layer could again be filled with sets of mechanisms. Given that this layer is

strongly evolutional and dependent on available technology; mechanisms could be placed togeth-

er with a set of constraints in a web-based repository. This approach would take account of the

short innovation cycles in technology. This complement would however exceed the frame of a

well-formed grammar. It would be rather using the pattern repository as a set of building blocks.

The current meta-model to the Dynamic Network Notation allows for such extensions through

the class ExtensionAttributes. The repository of control mechanisms could be complemented

through additional layers of categorization. Such categorization, if formulated independent of

language engineering and technical implementation, could enrich the developed theory of man-

agement of network effects in service platforms.

Second, the Dynamic Network Notation could be further extended. The language in its present

expansion state focuses on control mechanisms. Theoretically, attributes with other focuses may

be added. As an example, monitoring and security aspects might be of added-value to specific

solutions. Remaining on the attribute level, such extensions could be implemented without violat-

ing the meta-model. Even depiction of an activated attribute in the Dyno morphology is not ruled

out. Logic could be formulated through OCL-based constraints. Such extensions however should

avoid overloading the morphology as this would reduce clarity. In the current release, scalability

and base value are depicted in a binary way. The attribute is either set true or false. Further re-

search might allow a move from the simple binary perspective, providing an ordinal or interval

scale. Having such an enhanced logic would allow the attributes to be more specific. However,

such distinction makes the language more specific and reduces the models’ robustness over time.

Prerequisite to a scale of superior grade for scalability would be a progression in research. Cur-

rently, no generally accepted codes of practice exist for an ordinal or interval scale to scalability

in the context of infrastructure of service platforms.

D Conclusion

 204

The third path of further research is the potential alignment with other notations. The Dynamic

Network Notation provides a specific view point of service management of ecosystem interaction

around platforms with the focus of harnessing network effects. The Business Process Model and

Notation BPMN provide a rather focused level on explicit collaboration. A stack could help to set

both notations into context and correspondences between both notations could be defined. An

interesting path to follow would be to bridge the perspectives of network effects and service

management with discrete processes as formulated in BPMN. A possible solution would be to

enhance BPMN conversation through the integration of the Dyno logic. The advantage of such

integration would be the combination of Dyno’s advantages, such as allocated control mecha-

nisms, and BPMN’s advantages, such as defined translation to executable BPEL code.

Lastly, the concrete implementation can be further developed. Dyno has a set of implementa-

tions, conceived in a prototypic way, serving as proof of concept. Examples are the integration of

Dyno’s pattern language into MoSaiC. An enhanced integration of both solutions would allow for

enhanced modeling of service platforms. Also, the current status of the analyzer invites further

research. The currently provided analyses again just serve as proofs of concept. Implementing

Graph-theoretical analytics would allow for extensive analyses. However, to do so, suitable theo-

ry needs to be expanded or adapted. Analyzer and pattern repository together could evolve to-

wards an expert system, providing suggestions for improvement and design alternatives, integrat-

ing both, theory-based reflections and building blocks of structured experience.

 205

E Appendix

Questionnaire

The following table lists the questions, asked in the questionnaire and the answers, given by the

respondents CAS Software AG, SAP AG and M-Engineering U.G. The current questionnaire

applies a non-dichotomous approach, giving more than one choice. Using an odd number of

alternatives, the results support the revelation of tendencies. The ordinal scale documents the

respondent’s ranked opinion with

 Strongly agree (+2)

 Agree (+1)

 Disagree (-1)

 Strongly disagree (-2)

The first colomn refers either to the main hypothesis (MH) or to the subhypotheses H1-3.

The letter behind the abbreviation MH refers to the enumeration a)-d) in Subsection 7.3.3 with

respect to the topic Evaluating the Main Hypothesis (MH).

 No

C
A

S

S
A

P

M
E

n
g

Hypotheses Please position your experience with the editor

MHd 1 I found the features in the editor purposeful (zielfüh-

rend)to model Platforms Ecosystems and the respec-

tive network effects with the editor

1 2 2

MHd 2 The Graphical User Interface was Intuitive, and easy

to follow

1 -1 1

MHd 3 The Graphical User Interface was sufficiently com-

fortable to work with

1 1 1

E Appendix

 206

 No

C
A

S

S
A

P

M
E

n
g

 4 The tool did not restrict me in my modeling efforts 1 1 2

 When designing, I benefitted from editor’s guidance

based on DYNO’s grammar and its resulting context

related suggestions & restrictions

 with respect to

MHd 5 … transactions and influences -1 2 2

MHd 6 … controllable / uncontrollable activities and partici-

pants

1 2 2

MHd 7 … case-specific control mechanisms 1 2 2

MHd 8 … areas (control area, influence area, noise area) -1 2 2

MHd 9 … getting a plausibility check of my modeling inten-

tions

1 2 2

 Please position your experience with DYNO

MHa 10 It was easy to understand the DYNO in modeling dy-

namic networks around platforms.

1 2 2

MHa 11 DYNO gives me a better understanding of network

effects and control possibilities in platform ecosystems

1 2 2

 Dynamic Loops:

MHb 12 DYNO helps to locate or create dynamic loops, 1 2 2

MHb 13 DYNO helps to upgrade one-sided loops to 2- or multi-

sided loops, meaning to create interconnected loops to

structures of 2 or more loops which directly impact on

each other

-1 2 2

 Control Mechanisms:

 The context-specific suggestion of control mechanisms

H3 14 … always provides me with the the most suitable control

mechanisms;

-1 1 1

H3 15 … is unnecessarily limiting my scope of deci-

sion making;

-1 1 1

H3 16 … is difficult to grasp; -1 1 1

H3 17 … helps to design a platform running services

of improved quality (your personal perception of the

suggested solution);

1 1 1

H3 18 … helps to design a platform that influences

growth of consumer and provider ecosystem;

1 2 2

H3 19 … helps to design a platform that focuses 3
rd

party services that fit into the corporate strategy;

1 2 2

H3 20 … allowed me to completely model my cor-

porate platform (potentially describe in which contexts it

failed to do).

1 2 2

Dynamic Network Notation Ulrich Scholten

 207

 No

C
A

S

S
A

P

M
E

n
g

 Base Value:

 DYNO allowed me

H2 21 … to select the optimal nodes for

placing base values;

0 2 2

H2 22 … to evaluate whether our company already possess

strong base value candidates

0 2 1

H2 23 … to evaluate whether we still need to create suitable

base values;

0 2 1

H2 24 … to see whether – in view of our base value situation –

it makes sense to enter the platform business.

0 1 1

 Base Value:

H2 25 I was satisfied with the ordinal metrics for ‘Base Value’

suggested by DYNO.

0

 Scalability:

 DYNO allowed me

H1 26 to think about Scalability requirement per Division 0 0 2

 Please position your perception on the achievable

quality of the models designed with DYNO and the

editor

 Correctness:

2

1

1
MH c 27 I was able to produce one or more models where struc-

ture and behavior of the models are consistent with the

real world.

 Relevance:

1

2

2
MH c 28 All relevant elements from the real-world scenario find

application in the model-representation

MH c 29 All elements and relationships, applied in and required

in DYNO are relevant to accomplish its design goal.

1 1 1

 Economic Efficiency:

1

1

1
MH c 30 The model is robust, meaning it remains relevant over

time, even when quantities of users, services etc. evolve.

MH c 31 The model is adaptable, meaning it can be adapted

without big effort to a modified constellation (e.g. to

implement strategic change or to respond on environ-

mental change).

0 0 1

 Clarity:

1

1

2
MH c The produced model was clear, understandable and not

overloaded

 Comparability:

0

2

1
MH c When modeling design alternatives on the same business

case, I can compare them as they follow the same

grammar.

 Systematic Design

0

1

2
MH c The system-description from the Analyzer (Analysis

View) the Model are consistent.

E Appendix

 208

 No

C
A

S

S
A

P

M
E

n
g

 General perception

MH a 35 The notation and the tool helped me to produce a better

solution than without the tool

-1 2 2

Mh a 36 The design-time was shorter when using the editor as

compared to a design without the editor

1 2 2

MH a 37 I was quickly able to understand both Notation and Tool -1 1 2

 Questions on experience with DYNO, added in the sec-

ond part of setting II (with SAP and M-Engineering)

 Areas:

 The concept of control area, influence area and noise

area

H1 37 allowed me to better position my modeling

elements

 1 1

H1 38 supported my understanding on the authori-

ty for service management I have, depending on my

design decision

 2 2

H1 39 The concept of divisions helped me to better structure

my model

 1 2

H1 40 The concept of division groups helped me to model

repeated areas of similar behavior.

 2 2

 Elements:

 The following elements helped me to express the inter-

play of relationships within a platform

H2 41 Activity 2 2

H2 42 Participant 2 2

H2 43 Participant Group 2 2

H2 44 Transaction 2 2

H2 45 Influence 2 2

 Total Score 13 68 75

 Number of answered questions 28 43 45

 Weighted average score per question 0,46 1,58 1,67

 average score SAP /M-Eng 1,62

Dynamic Network Notation Ulrich Scholten

 209

List of Figures

Figure 1: Outline of the present work ... 9

Figure 2: Structure of the chapter on problem identification ... 11

Figure 3: Areas of staged stakeholding power ... 22

Figure 4: Comparison of Long-Time Availability of

Web Services as ordered sets, structured by increasing availability .. 25

Figure 5: A Network of services around Salesforce ... 30

Figure 6: Service management actions during the service life cycle ... 32

Figure 7: Stocks, flows, auxiliary variables and causal loops, depicted in the Stock and Flow
Diagramming Notation (Forrester 1961) .. 55

Figure 8: Simulation of a service platform including ecosystem and competition, simulated with the
tool VenSim [116], based on two models on n network and complementarity effects by Sterman [8] 59

Figure 9: Market share of platform 1 (for sensitivities 0.1, 0.5, 1, 5) as a phase-plot of relative

subscription base, based on [8] ... 62

Figure 10: Simulation based on the model in Figure 8, with 2 competing platforms of a same-size
consumer base of 50.000 users ... 63

Figure 11: Feedback controlled system .. 65

Figure 12: Derivation of process elements based on System Theory .. 76

Figure 13: Simplified Stock and Flow Diagramming Notation with adapted terminology in the
context of structural allocation ... 77

Figure 14: Control area ... 108

Figure 15: Influence area .. 109

Figure 16: Division (displayed with Scalability-symbol) and Division Group ... 111

Figure 17: Participant representations. Participant 1 (controllable, no control mechanism placed, base

value activated); Participant 2 (controllable, one or more control mechanisms placed, no base value);
Participant 3 (uncontrollable, therefore no option for base value); Participant Group (uncontrollable,
therefore no option for base value). .. 113

Figure 18: Activities; Activity 1 (no control mechanism, no base value),
Activity 2 (one or more control mechanisms placed, on base value activated) ... 115

Figure 19: Transaction (no control mechanism) .. 116

Figure 20: One uncontrollable Influence and a controllable Influence without control mechanism 117

Figure 21: Gateway ... 118

Figure 22: Complete Dyno meta-model ... 121

Figure 23: Root Element and Core meta-model ... 122

Figure 24: Core nodes and edges .. 124

Figure 25: Nodes ... 126

Figure 26: Location and divisions .. 126

Figure 27: Definition of edges .. 127

Figure 28: Nodes and Edges (those parts within the control area) and their suitable control
mechanisms ... 129

Figure 29: Salesforce, Launch phase, screenshot from Dyno-Editor ... 130

Figure 30: Salesforce, growth phase 1, fraction of screenshot from Dyno-Editor 131

file:///C:/Users/Uli/Dropbox/SharedFolders/Perli_Uli/UliPromo/LastRound/Final%20Integration%20of%20all/Dissertation%20Ulrich%20Scholten%20130617(layout%20revision%206)(print).docx%23_Toc360548193
file:///C:/Users/Uli/Dropbox/SharedFolders/Perli_Uli/UliPromo/LastRound/Final%20Integration%20of%20all/Dissertation%20Ulrich%20Scholten%20130617(layout%20revision%206)(print).docx%23_Toc360548193

E Appendix

 210

Figure 31: Salesforce, growth phase 2, screenshot from Dyno-editor ... 132

Figure 32: Salesforce, growth phase 3, screenshot from Dyno-Editor .. 135

Figure 33: Meta-model to service platform patterns .. 138

Figure 34: Structure of service platform patterns ... 139

Figure 35: Meta-model for the collaborative composition process for Service Management Pattern
repository based on Schuster, Zirpins et al. [135] .. 152

Figure 36: Service binding protocol [44]. Ovals depict a contribution’s state; dashed arrows

describe the experts’ and solid arrows the owners’ decisions. Binding open is the starting state 153

Figure 37: Service request and response protocol [44] .. 154

Figure 38: Pattern repository, modeled with Dyno .. 155

Figure 39: Basic Layout .. 156

Figure 40: Focal approach (left) and decentralized approach (right) to modeling..................................... 157

Figure 41: Editor architecture ... 160

Figure 42: Graphical user interface to the model designer including a Dyno-model, accomplished
with ORYX ... 161

 Figure 43: Dyno analyzer ... 170

Figure 44: Dyno model ... 172

Figure 45: List of elements with missing control mechanisms .. 173

Figure 46: List of loops and highlighting of the shortcoming .. 173

Figure 47: Analysis indicating the participant carrying the base value and the fact that it lacks

network attractiveness ... 174

Figure 48: Fragment of structured listing of elements including their attributes and description. 175

Figure 49: Sample group for evaluation of Dynamic Network Notation and DynoCloud.org editor. 179

Figure 50: S.Chand Edutech platform design ... 184

Figure 51: Comparison of research requirements, hypotheses, solution design and case study
questions .. 190

Figure 52: Overview of group composition of goals of SAP and M-Engineering 192

Dynamic Network Notation Ulrich Scholten

 211

List of Tables

Table 1: Comparison of related work ... 5

Table 2: Technically oriented categorization of service intermediaries .. 21

Table 3: Mapping table of quality factors and intermediaries; q: query, m: monitor, s: specify, p:
prescribe .. 27

Table 4: Comparative analysis on exerted Stakeholding Power to ensure Web service quality 28

Table 5: Development environments of Salesforce.com and Netsuite .. 33

Table 6: Overview of research requirements .. 40

Table 7: Stack for meta-modeling applied on graphical language engineering ... 52

Table 8: Modes and Mechanisms of Control, based on Kirsch [43] .. 66

Table 9: Conceptualization of knowledge .. 67

Table 10: Mapping of requirements with solution design .. 69

Table 11: Summary table of functional design requirements for the control area 71

Table 12: Summary table of functional design requirements for the influence area 72

Table 13: Summary table of functional design requirements for the noise area .. 73

Table 14: Summary table of functional design requirements for the influence area 74

Table 15: Mapping of requirements with solutions originating in System Theory 75

Table 16: Summary table of functional design requirements for participant groups................................... 80

Table 17: Summary table of functional design requirements for participants ... 82

Table 18: Summary table of functional design requirements for activities ... 83

Table 19: Summary table of functional design requirements for transactions .. 85

Table 20: Summary table of functional design requirements for influences ... 87

Table 21: Modes and Mechanisms of Control, based on Kirsch [43], modified and extended 89

Table 22: Activities, participants, transactions and influences with their suitable control mechanisms..... 90

Table 23: Summary table of functional design requirements for service platform provisions 91

Table 24: Summary table of functional design requirements for prescriptive control 92

Table 25: Summary table of functional design requirements for sanctional control 94

Table 26: Summary table of functional design requirements for prescriptive control 95

Table 27: Classification of collaborative feedback systems .. 98

Table 28: Summary table of functional design requirements for market-regulative control 99

Table 29: Summary table of functional design requirements for informative control............................... 101

Table 30: Summary table of functional design requirements for motivational control 102

Table 31: Model stack including Dyno Meta-Model ... 103

Table 32: Concrete grammar in the context of the model-stack .. 163

E Appendix

 212

Dynamic Network Notation Ulrich Scholten

 213

Glossary

Abstract grammar Abstract grammar gives a high-level description of a →grammar,

using →abstract syntax and →abstract morphology, but leaving out
the specific technical implementation.

Abstract

morphology
Abstract →morphology prescribes the representation of graphical

elements in an →abstract grammar, leaving out the specific technical

implementation.

Abstract syntax Abstract syntax gives a high-level description of →syntax, leaving

out the specific technical implementation.

Activities Activities are value creating activities on and in interaction with the

→service platform.

Areas of stages

authority

See → control area; → influence area; → noise area.

Authority

See → stakeholding power.

Auxiliary variable Auxiliary variables regulate →flows. They can be cascaded. Their

origins may be →exogenous or functions of →stocks.

Base value The base value of a service platform is the value proposition, offered

by a →platform operator to →ecosystem participants to incite

→network effects.

Solution manager The solution manager brackets those job profiles, which identify and

communicate business requirements, opportunities and goals for a

→service platform.

Causal loops Causal loops are → feedback loops, where the magnitude of a

→stock amplifies the →flow by a certain factor, which in reciprocity
increases the stock again.

Controlled system A controlled system includes a →control loop.

Control loop Control loops are →causal loops which carry →control mechanisms

on →transactions, →activities and →influences to manipulate their
progression.

Control theory

Control theory is the study on →controlled systems.

Control mechanism Control mechanisms are regulators within a →controlled system
which have the goal to minimize the offset between an actual system

output and a desired reference value.

E Appendix

 214

Control loop Control loops are →causal loops which carry →control mechanism

on →transactions, →activities and →influences to manipulate their
progression.

Close to static A →stock is considered close to static when it hardly accumulates or
depletes within a period of time.

Concrete grammar Concrete grammar in →graphical languages is a set of rules consist-

ing of →concrete syntax and →concrete morphology.

Concrete

morphology
Concrete morphology in →graphical languages prescribes the repre-
sentation of graphical elements specific to the technical implementa-

tion.

Concrete syntax Concrete syntax in →graphical languages is a set of production rules
specific to the technical implementation.

Context-free

grammar
In Context-free →grammars (Type 2) all production rules produce a
single non-terminal on the left hand side. Context free grammars can

be applied when describing recursive language structures (→nesting).

Context-sensitive
grammar

In Context-sensitive →grammars (Type 1), the number of elements
in the string on the left-hand side must be smaller or equal to the

number of elements on the right side.

Control Control describes →service management actions by the →platform
operator in order to change a set of parameters from a current status

(actual value) to a target status (setpoint). Control in a →service plat-

form context operates as a →feedback loop, meaning with monitor-

ing feedback in the context of a regulatory process. The mechanisms

which are used to control such a process are called →control mecha-
nisms.

Control area Control area is the area where the →platform operator can exert con-

trol over →activities and internal →participants. It is also the area

from where he influences →ecosystem participants that are placed

outside the →control area.

Control theory Control theory is the study of influencing →closed-loop systems
through regulators.

Critical mass The critical mass describes the threshold required for a →base value

to incite a →network effect. The critical mass of a →stock is the

magnitude that is equal to the threshold required to exhibit exponen-

tial behavior of → network attractiveness.

Division A division is a structural entity of homogeneous conditions within

the →control area.

Dynamic Network Notation Ulrich Scholten

 215

Division group A division group is a finite set of divisions within the →control area.

Dynamic system See →system dynamics.

Dynamics See →system dynamics.

Ecosystem partici-

pant
Ecosystem participants are →participants and →participant groups in

the →platforms ecosystem.

Effectiveness The effectiveness of a →language describes how well the language
can express information with respect to a specific target group.

Efficiency The efficiency of an →utterance describes how well it is modeled.

Expressiveness The expressiveness of a →graphical language describes its ability to

express desired information in a semantically (→semantics) and syn-

tactically (→syntax) correct way.

Exogenous See → exogenous variable.

Exogenous variable A variable where the origin is not modeled within its utilizing model.

Feedback Feedback is the targeted provision of information on platform-based

→activities to a →participant, active in and in reciprocal relationship

with the →service platform.

Feedback control → Feedback controlled system.

Feedback controlled

system

Feedback controlled systems are systems, being regulated by control

devices (see →control theory), aligning the reference value with the
fed back system output. The special version of feedback controlled

systems within this thesis is referred to as →controlled system.

Feedback loop See → feedback.

Flow Flows circumscribe the inflow into or outflow from a →stock.

Generative grammar Generative →grammars build on a limited kernel of simple utteranc-
es, complemented with a set of grammatical transformation rules,

transferring one correct utterance or fraction of an utterance to a new

correct one. The hierarchy of generative grammars, consisting of a

series of 4 groups of types with increasing expressive power:

→recursively enumerable grammars, →context-sensitive grammars,

→context-free grammars and →regular grammars.

E Appendix

 216

Grammar A grammar is constituted through a finite set of production rules,

describing how the elements of the languages alphabet are concate-

nated. It consists of three segments: →morphology, →syntax and

→phonology.

Graphical grammar Graphical →grammars are a special form of →generative grammars
which describe the elements of a language and their relationships

graphically.

Graphical language Graphical →languages are a special form of artificial languages
which describe their elements and relationships graphically.

Graphical meta-

language
Graphical meta-languages are special versions of →meta-languages

expressed as →graphical language.

Graphically engi-

neered grammar
A →language is graphically engineered with one or more

→graphical grammars, optionally complemented by textual gram-

mars. One or more →graphical meta-languages complemented with

optional textual meta-languages document the →grammar.

Influence Influences are means to stimulate the rate of value flows at their

→sources.

Influence area

The influence area is the area where →participants are located, which
are in or may come into value exchanging relationship with the

→service platform. →Ecosystem participants within this area may be

influenced by the →platform operator, but also by other players with-
in the ecosystem or outside.

Informative control In the category of →control mechanisms called informative control

the →platform operator preprocesses information and addresses it to

existing or potential →participants or →participant groups. The

analyses are customized on the addressed participants or participant

groups and have the goal to incite a self-regulatory process among

them.

Internal participant An internal participant is a →participant, located within the →control
area.

Language A language is constituted of a (finite or infinite) set of →utterances
of finite length, constructed from a finite alphabet of symbols

through a →grammar.

Linguistic units Linguistic units are building blocks of an →utterance.

Linguistic utterance See →utterance.

Dynamic Network Notation Ulrich Scholten

 217

Managed

self-organization

Managed self-organization describes the trade-off between the level

of control exerted over →service quality and the degree of →self-

organization.

Market regulative

control
Market regulative control is a category of →control mechanisms,

driven by →participants. It gives explicit →feedback to consumers or

service providers in the →service platform and / or in the ecosystem

on value, offered in →activities or through →participants. This caus-

al loop incites a self-regulatory process.

Meta-language The term meta-language defines languages conceived to describe

other natural or artificial languages with the help of specific termi-
nology and symbols.

Morphology Morphology prescribes the representation of linguistic units in a lan-

guage (e.g., of words).

Motivational control Motivational control is a category of control mechanisms that aim at

steering →ecosystem participants towards the accomplishment of

specific outcomes through rewards.

Natural language The term natural language describes →languages, which have not
been artificially engineered but which emerged over periods of time

within communities as means of communication.

Nesting Nesting describes recursive →language structures.

Network attractive-

ness

Network attractiveness is defined through an exponential function of

the product of a network participant’s sensitivity to a →stock and the
magnitude of that stock relative to a threshold. The threshold delimits

the magnitude where the impact starts.

Network effects Network effects describe the reciprocal relation between the value of

a →service platform and the quantity of involved service consumers

and service providers. Network effects are driven by →self-

organization of the →platform ecosystem. A network effect takes

place within a causal loop, when →network attractiveness grows
exponentially.

Noise area Noise area is the subsection outside the platform ecosystem, where

the →platform operator has no stakeholding power.

Non-linearity Non-linearity is the effect within →causal loops, where manipula-
tions are not linearly reversible, due to the accumulative behavior of

→stocks.

Notation A notation is a formalized →language, conceived to better describe

complex relationships than a →natural language. They are used e.g.,

in music, mathematics or information technology.

E Appendix

 218

Participant Participants are individuals or entities with small close to static

capacity within the →control, →influence or →noise area.

Participant group Participant groups are groups of individuals or of entities of finite

large size within →influence or →noise area.

Phonology Phonology defines the organization of sounds within →utterances.

Platform architect The platform architect brackets those job profiles in charge of the

overall technical →service platform design.

Platform ecosystem

Platform ecosystems are sets of autonomous participants around ser-

vice platforms, which are in reciprocal relationship with the latter.

Prescriptive control Prescriptive Control is an enforcing category of control mechanisms,

describing the sequence of observing and steering a →participant’s

set of actions within →activities as well as of →internal participants.

For actions in activities, it may further include subsequent corrective

measures on their results through the →platform operator.

Platform operator The platform operator is the legal entity, managing a →service plat-
form and legally responsible for all course of action.

Protagonist A protagonist is the entity, whose view point is reflected in a model.

Quality of service Quality of service describes the match of service delivery with func-

tional and non-functional consumer expectations. Quality of service

includes the quality groups Business Value Quality, Service Level

Measurement Quality, Business Process Quality, Suitability Quality,

Security Quality and Manageability Quality.

Recursively enu-

merable grammars
Recursively enumerable →grammars (Type 0) have no restriction at
all in the production rules.

Regular grammar Regular grammars (Type 3): Production which do not allow recursive

structures (→nesting) These grammars can be applied on natural lan-

guages.

Restrictive Control Restrictive Control is a category of →control mechanism on

→transactions to filter value flows. The mechanisms are placed with-

in the →control area and verify compliance with →service platform
provisions.

Sanctional control Sanctional control is a category of →control mechanisms. It de-

scribes the enforcing action of the →platform operator on policy

breaches in →activities through an escalation routine, including dis-

covery processes, scope and time of reaction for the →participant

and range of enforcements through the →platform operator.

Dynamic Network Notation Ulrich Scholten

 219

Scalability

Scalability describes to ability to meet increased workload, through a

planned incremental increase of capacity.

Self-organization Self-organization in the context of service platforms describes the

line-up of →platform ecosystem participants over time to a tempo-

rary situation of equilibrium, attained through →feedback.

Semantics Semantics assigns a meaning to elements of an →utterance (symbols,
words) and to the utterance the as a whole.

Service A service stands for any kind of deployed software, provided by

→service platforms on demand.

Service management Service management in →service platforms describes the activity of
managing the whole service life-cycle, service design, service transi-

tion, service operation and continuous service improvement with the

objective to make capabilities and resources available that are re-

quired by the consumer.

Service platform A service platform offers own or third party software as metered on

demand services. Software can be partially or completely deployed

outside the service platform. The traffic, when a service is consumed

passes through the service platform.

Service platform

pattern

Platform service management patterns are structured descriptions of

best practices for harnessing →network effects in →platform ecosys-

tems.

Service platform

policy

Service platform provisions are documents, defining restrictions to

and rules of participation and cooperation for →participants in

→activities in service platforms.

Service platform

value

Service platform value denotes those attributes, arising from the

whole platform or from defined subsets, which have positive effect

on the performance of actions, objects and tasks.

Service value Service value describes those service attributes with positive effect

on performance of actions, objects and tasks.

Sink Sinks are negative →sources.

Source Sources are →stocks outside the boundary of the model with as-

sumed infinite capacity.

Stakeholding power Stakeholding power describes the degree of authority of a →platform
operator over an ecosystem participant or activity.

E Appendix

 220

Stocks Stocks describe a vessel which can accumulate or deplete. The term

vessel is used in the figurative sense.

Strong network

effect
A strong →network effect takes place when at least one →causal

loop fulfills two necessary conditions: accumulation in a →stock

exceeding the delimiting threshold and a sufficiently high →source
allowing for exponential growth of network attractiveness.

Syntax Syntax defines the assembly rules of utterances through →linguistic
units. Further, syntax determines adaptation of specific representation

of linguistic units.

System dynamics System dynamics describe macroscopic system behavior over time,

built through interaction of →sources and sinks, →stocks, →flows

and →feedback loops. System dynamic theory is part of →system

theory.

System theory

System theory is the study of systems, self-regulating through

→feedback.

Textual grammar Textual →grammars build languages through linear catenation of
text.

Threshold See → network attractiveness.

Transformational

grammar
See → generative grammar.

Transaction Transactions describe any kind of transfer into, from or within the

platform, which eventually could eventually create value to the plat-

form.

Utterance (Linguistic) utterances are elements of a →language (e.g. sentences,

mathematical statements or graphical models).

Well-formed See →well-formedness.

Well-formedness An →utterance that conforms to the production rules of a

→grammar is called well-formed.

Dynamic Network Notation Ulrich Scholten

 221

List and Abstracts of Related Publications by the Author

Ulrich Scholten, Nelly Schuster, Stefan Tai (2012):

A Pattern Language and Repository for Service Network Management, Proceedings of the IEEE

International Conference on Service Oriented Computing & Applications SOCA 2011, Taipeh.

Abstract:

Successful service platform operators foster their market performance by leveraging economic

network effects, which implicitly control service ecosystems. Explicitly, third party services are

used to complement the platform’s intrinsic value to the users. Platform operators’ key to suc-

cess is the initiation of a snowballing interplay of consumers’ preferences and a respective port-

folio of service offerings. The Dynamic Network Notation DYNO supports modeling such ser-

vice networks from a service management perspective, while defining system-interaction control

and exploiting network effects. However, there is a need for an evolving and reusable base of

experience that allows researchers and platform operators to learn from and to share knowledge

on best practices. To this end, we introduce service network management patterns based on

DYNO. In addition, to exploit the dispersed applications through various market segments, we

present a community-driven pattern repository. The repository applies coordination and review

means to ensure quality of patterns without restricting creativity during the pattern design pro-

cess.

Ulrich Scholten, Robin Fischer, Christian Zirpins (2012):

The Dynamic Network Notation: Harnessing Network Effects in PaaS-Ecosystems, Proceedings

of the Fourth Annual Workshop on Simplifying Complex Networks for Practitioners co-located

to the www 2012, Lyon.

Abstract:

Web applications complement the Platform-as-a-Service (PaaS) value by satisfying widespread

and rapidly changing consumer requirements within limited time and budget. Successful PaaS

providers excel in governing their market performance by leveraging complex network effects,

which implicitly control PaaS-ecosystems. There is currently no methodically sound and easy to

use tool available to solution managers and software engineers of PaaS-offerings that address

challenges and opportunities in launching and governing such highly dynamic networks. In this

paper, we capture network behavior through elements of complex system and control theory.

Our dynamic network notation (DYNO) builds upon these theories. In more detail, DYNO mod-

E Appendix

 222

els PaaS offerings with a focus on identifying and shaping network effects towards a sufficient

user-base and an optimized portfolio of Web applications, all while maintaining a high quality of

service.

Nelly Schuster, Christian Zirpins, Ulrich Scholten (2011):

How to Balance Flexibility and Coordination? Service-oriented Model and Architecture for

Document-based Collaboration on the Web, Proceedings of the IEEE International Conference

on Service Oriented Computing & Applications SOCA 2011, Irvine.

Abstract:

Frequently, distributed work groups require the documenting of joint activities or collaborative

authoring of documents comprising diverse resources, originating both from humans and the

Web or enterprise systems. These creative collaborations involve ad hoc human interactions and

unexpected changes which build an implicit situational process. Supporting such collaboration

requires a balance between retaining flexibility of collaboration with space for individual crea-

tivity and the ability to coordinate the collaborative evolution of documents. Existing coordina-

tion approaches support (partial) automation of conventional business processes but are too in-

flexible for creative collaboration. Web-based collaboration tools do not explicitly drive coordi-

nation. In this paper we provide a collaboration model for the coordinated creation of

documents as an evolving composition of services embedded into a RESTful scalable architec-

ture. Through a prototype we substantiate how the approach leads to intended output documents.

Simone Scholten, Ulrich Scholten (2011):

Platform-based Innovation Management: Directing External Innovation Efforts in Platform Eco-

systems, Journal of the Knowledge Economy, Springer, New York.

Abstract:

Modular platforms have become the centerpiece of collaborative value creation in platform eco-

systems. Platform ecosystems co-create the platform's value proposition and support its market

adoption as the more complementors join the ecosystem to supply complementarities, the more

valuable the platform becomes to consumers due to a greater variety of choice. This poses new

requirements on managing innovation in open platform environments. While academic research

stresses the relevance of external complementary innovation for platform success, it lacks, how-

ever, a concrete understanding to guide platform owners in directing external innovational ef-

Dynamic Network Notation Ulrich Scholten

 223

forts in coopetive platform ecosystems to co-create and deliver value, while ensuring the overall

quality, reliability and consistency of the "whole" solution. Based on the challenges platform

ecosystems place on innovation management, this paper explores and categorizes control mech-

anisms leading platform owners in the ICT industry have implemented to steer external com-

plementary innovation efforts. From that an overall platform-based innovation management

process is developed.

__

Ulrich Scholten, Robin Fischer, Christian Zirpins, Simone Scholten (2011):

DYNO: A Notation to Leverage Dynamic Network Effects in PaaS Ecosystems, Proceedings of

the IEEE International Conference on Service Oriented Computing & Applications SOCA 2011,

Irvine.

Abstract:

Platform-as-a-Services offerings continuously gain importance as two-sided markets, offering

Software-as-aService (SaaS) to the respective customers. Market success is achieved by plat-

forms which excel in shaping ecosystems of users and autonomous SaaS suppliers around their

basic value proposition - and in controlling quality of service in function of customer require-

ments. In this paper, we suggest a notation for dynamic networks "DYNO", designed to help

platform providers in creating PaaS, optimized on their specific requirements. In addition, DY-

NO gives support in properly allocating control mechanisms to guarantee high quality of service.

In a use-case we describe how solution managers and service engineers may use DYNO models

to conceive PaaS ecosystems.

Normann May, Ulrich Scholten, Robin Fischer (2011):

Towards an Automated Gap Analysis for e-Service Portfolios, Proceedings of the 8th Interna-

tional Conference on Services Computing SCC 2011, Washington.

Abstract:

Intermediaries for e-services continuously gain momentum, powered by a materializing Internet

of Services. However, quality of service still exhibits considerable shortcomings, as no struc-

tured process to enhance consumer satisfaction is available yet. To improve the match of deliv-

ered e-service quality and expected service quality on the consumer side, we develop a portfolio

optimization process that integrates both, the consumer’s as well as the intermediary’s perspec-

tive. First, we introduce a toolkit for an e-service-oriented gap analysis. Thereupon, we identify

E Appendix

 224

monitoring points to measure service quality gaps automatically. A subsequent aggregation of

measured data into customized feedback information allows for applying the toolkit to continu-

ously optimize e-service portfolios. Instantiated in the AGORA e-service market, we conclude

with a report on our recent implementation results.

Ulrich Scholten, Robin Fischer, Dimitir Bojkov, Normann May (2011):

Supply Chain Control building on Emergent Self-Organizing Effects, Proceedings of the 4th

Academic Symposium on Supply Management, Würzburg.

Abstract:

This paper sheds light on control mechanisms to improve and automate service quality respec-

tively service portfolio management in platform ecosystems. Its focus is placed on e-service

value networks as found in platforms such as the Apple App Store, Facebook, Salesforce or SAP

ByD. The paper differentiates between direct and indirect control mechanisms and explains how

they can be embedded within feedback controlled systems. Informative and Motivational Con-

trol mechanisms act on the macro level, indirectly influencing a whole system or subsystem to-

wards a specific target. Sanctional and Restrictive Control in conjunction with Co-Regulative

Control act on the micro level and directly influence specific services. Market Regulative Con-

trol indirectly influences specific services. The paper suggests and formalizes possible sequences

to implement control mechanisms, allowing for optimizing and building on the platform ecosys-

tem’s emergent characteristics.

Ulrich Scholten (2010):

Service Level Management in Platform Ecosystems, Proceedings of the INFORMATIK 2010

conference on Service Science, Leipzig.

Abstract:

With growing importance of e-service platforms, enhanced Service Level Management (SLM)

concepts are required, paying respect to the service providers' autonomy as important source for

value creation within a platform ecosystem. This paper proposes a highly automated SLM con-

cept, wherein traditional direct control mechanisms are complemented by indirect mechanisms,

including reputation systems, selected motivational measures and information-based guidance of

each individual service-provider. The concept makes use of the ecosystems' inherent emergent

and self-organizing processes and is grounded on system and control theory.

Dynamic Network Notation Ulrich Scholten

 225

Simone Scholten, Ulrich Scholten (2010):

Platform-based Innovation Management: Directing External Innovational Efforts in Self-

Organizing Platform Ecosystems, Proceedings of the PICMET 2010 Conference on Technology

Management for Global Economic Growth, Bangkok.

Abstract:

During recent years, modular platforms have become the centerpiece of collaborative value crea-

tion in customer-driven platform ecosystems. Platform ecosystems co-create the platform’s val-

ue proposition and support its market adoption as the more complementors join the ecosystem to

supply complementarities, the more valuable the platform becomes to customers due to a greater

variety of choice. This poses new requirements on managing innovation in open platform envi-

ronments. While academic research stresses the relevance of complementary innovation for plat-

form success, it lacks, however, a concrete understanding of how platform operators can direct

external innovational efforts in complex self-organizing ecosystems to co-create and deliver

value while ensuring the overall quality, reliability, and consistency of the ‘whole’ product.

Based on case study results, this paper presents a categorization of control mechanisms currently

applied in platform markets, enabling the platform operator to steer external complementary

innovation within the context of a platform strategy. From that an overall innovation manage-

ment process is developed.

E Appendix

 226

Robin Fischer, Ulrich Scholten, Simone Scholten (2010):

A reference architecture for feedback-based control of service ecosystems,

Proceeding of the 4th IEEE International Conference on Digital Ecosystems and Technologies

DEST 2010, DUBAI.

Abstract:

With the emergence of digital business ecosystems, new control mechanisms are required to

sustainably ensure responsiveness on dynamically evolving consumer demand, as well as goal

congruence with the platform providers’ strategic goals. Based on system theoretical reflections,

we propose a 3-layer reference architecture that collects data on service interactions, aggregates

monitoring and feedback information and thus provides data basis for the said control mecha-

nisms.

__

Simone Scholten, Ulrich Scholten, Robin Fischer (2010):

Composite Solutions for Consumer-Driven Supply Chains: How to Control the Service-enabling

Ecosystem? Proceedings of the 3rd Academic Symposium on Supply Management, Würzburg.

Abstract:

In this paper, the shift from classical supply chains to more dynamic value net designs based

upon modular product and service architectures is revised. The authors show that to enable con-

sumer-driven supply chains, platform operators have to orchestrate distributed value creation

efforts and ensure continuous supply, coherence and quality. However, if the platform perfor-

mance deviates from the expected output, how should the platform operator react to get the sys-

tem (back) on target? What are the strategic and operational means of acting on the control path

to control outputs to-wards desired values, thus ensuring a desired level of performance? In re-

sponse to this void, the authors develop a control process for service-enabling ecosystems,

which allows to systematically assigning control mechanisms to different value creation phases

prior to, during and after service supply, categorized into six categories. Feedback loops play a

central role: the provision of extended consumer information stimulates overall platform per-

formance by empowering autonomous service enablers to optimize their service portfolio ac-

cording to the most recent consumer needs and, therefore, to increase the customer perceived

value of the overall platform solution.

Dynamic Network Notation Ulrich Scholten

 227

Robin Fischer, Ulrich Scholten, Simone Scholten, Stefan Tai (2009):

Information-based Control of Service-enabling Ecosystems, Proceedings of the Second Interna-

tional Workshop on Enabling Service Business Ecosystems, Athens.

Abstract:

Continuous optimization of value co-creation in networks of consumers and autonomous service

enablers describes a major challenge to mediating platform operators. In analogy to systems

theory, we propose to introduce customizable feedback loops from the service-enabling ecosys-

tem to the service enablers via the platform operator. Relevant feedback information can be de-

rived from analysis of network structure, service interactions, and service consumer preferences.

In using our method, optimization of individual service offerings and of the network as a whole

is facilitated through the platform operator, while retaining the autonomy of each service provid-

er in the network.

Ulrich Scholten, Robin Fischer, Christian Zirpins (2009):

Perspectives for Web Service Intermediaries: How Influence on Quality Makes the Difference,

Proceedings of the 10th International Conference on Electronic Commerce and Web Technolo-

gies (EC-Web 09) Linz, Austria.

Abstract:

In the service-oriented computing paradigm and the Web service architecture, the broker role is

a key facilitator to leverage technical capabilities of loose coupling to achieve organizational

capabilities of dynamic customerprovider- relationships. In practice, this role has quickly

evolved into a variety of intermediary concepts that refine and extend the basic functionality of

service brokerage with respect to various forms of added value like platform or market mecha-

nisms. While this has initially led to a rich variety of Web service intermediaries, many of these

are now going through a phase of stagnation or even decline in customer acceptance. In this pa-

per we present a comparative study on insufficient service quality that is arguably one of the key

reasons for this phenomenon. In search of a differentiation with respect to quality monitoring

and management patterns, we categorize intermediaries into Infomediaries, e-Hubs, e-Markets

and Integrators. A mapping of quality factors and control mechanisms to these categories depicts

their respective strengths and weaknesses. The results show that Integrators have the highest

overall performance, followed by e-Markets, e-Hubs and lastly Infomediaries. A comparative

market survey confirms the conceptual findings.

 228

References

[1] P. Mell and T. Grance. The NIST Definition of Cloud Computing. 2009,

http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc, retrieved 2013-

02-08.

[2] B. P. Rimal, E. Choi, and I. Lumb: A taxonomy and survey of cloud computing

systems. In INC, IMS and IDC, 2009. NCM'09. Fifth International Joint Conference

on, pages 44-51. IEEE, 2009.

[3] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What's inside the Cloud? An

architectural map of the Cloud landscape. Proceedings of the 2009 ICSE Workshop

on Software Engineering Challenges of Cloud Computing, pages. 23-31, IEEE

Computer Society, 2009.

[4] A. Holt, K. Weiss, K. Huberty, E. Gelblum, S. Flanner, S. Devgan, A. Malik, N.

Rozof, A. Wood, P. Standaert, F. Meunier, J. Lu, G. Chen, B. Lu, K. Han, V. Khare,

and M. Miyachi. Cloud Computing Takes Off - Market Set to Boom as Migration

Accelerates. Morgan Stanley Blue Paper Morgan Stanley, 2011.

[5] H. Chesbrough. Open Innovation: Where Weve Been and Where Were Going.

Research-Technology Management, 55(4):20-27, 2012.

[6] S. M. Lee, T. Kim, Y. Noh, and B. Lee. Success factors of platform leadership in web

2.0 service business. Service Business, 4(2):89-103, 2010.

[7] L. Cherbakov, G. Galambos, R. Harishankar, S. Kalyana, and G. Rackham. Impact of

service orientation at the business level. IBM Systems Journal, 44(4):653-668, 2005.

[8] J. D. Sterman. Business Dynamics: Systems Thinking and Modeling for a Complex

World. McGraw Hill Higher Education, Boston, MA, 2000.

[9] T. De Wolf and T. Holvoet. Emergence versus self-organisation: Different concepts

but promising when combined. Engineering self-organising systems:77-91, 2005.

[10] S. Keswani, A. Krans, E. H. Henlin, J. Mirandi, M. Casey, and K. Gagnon. Market

Landscape – Public Cloud 4/2011. CLOUD BUSINESS QUARTERLY, 2011.

[11] R. Hirschheim, H. K. Klein, and K. Lyytinen. Information Systems Development and

Data Modeling: Conceptual and Philosophical Foundations. Cambridge University

Press, Cambridge, 1995.

[12] J. Becker and D. Pfeiffer. Konzeptionelle Modellierung: Ein

wissenschaftstheoretischer Forschungsleitfaden. In F. Lehner and S. Zelewski (eds.)

Wissenschaftstheoretische Fundierung und wissenschaftliche Orientierung der

Wirtschaftsinformatik, pages 1-17. Gito, Berlin, 2007.

[13] S. K. Langer. Feeling and Form: a theory of art developedfrom philosophy in a new

key, London: Routledge & Kegan Paul, 1953.

[14] B. Shneiderman: The eyes have it: A task by data type taxonomy for information

visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages

336-343. IEEE, 1996.

[15] J. Mackinlay. Automating the design of graphical presentations of relational

information. ACM Transactions on Graphics (TOG), 5(2):110-141, 1986.

[16] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns, Buildings,

Constructions. Oxford University Press, New York, NY, 1977.

Dynamic Network Notation Ulrich Scholten

 229

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns: Abstraction and

Resuse of Object-oriented Designs. In ECOOP '93, pages 406-431. Springer,

Heidelberg, 1993.

[18] E. Turban. Decision support and expert systems: management support systems.

Prentice Hall PTR, 1990.

[19] T. Eisenmann, G. Parker, and M. Van Alstyne. Platform envelopment. Strategic

Management Journal, 32(12):1270-1285, 2011.

[20] G. Parker and M. V. Alstyne. Innovation, openness and platform control. Proceedings

of the 11th ACM conference on Electronic commerce, pages. 95-96, Cambridge,

Massachusetts, USA, ACM, 2010.

[21] A. Parker and T. Pohlmann. The Emerging IT Ecosystem: The Line between

Technology and Service Will Blur at a Faster Pace. Forrester Research, Cambridge,

MA, 2007.

[22] T. Eisenmann, G. Parker, and M. W. Van Alstyne. Strategies for two-sided markets.

Harvard business review, 84(10):92, 2006.

[23] J. Cardoso: Modeling Service Relationships for Service Networks. In 3rd

International Conference on Exploring Services Sciences. Porto, Portugal: LNBIP,

2013.

[24] J. Cardoso, C. Pedrinaci, and P. Leenheer: Open Semantic Service Networks:

Modeling and Analysis. In 3rd International Conference on Exploring Services

Sciences. Porto, Portugal: LNBIP, 2013.

[25] J. Cardoso, C. Pedrinaci, T. Leidig, P. Rupino, and P. De Leenheer: Open semantic

service networks. In International Symposium on Services Science (ISSS’12),

Leipzig, Germany, 2012.

[26] M. Bitsaki, O. Danylevych, W. J. Van Den Heuvel, G. Koutras, F. Leymann, M.

Mancioppi, C. Nikolaou, and M. Papazoglou: Model transformations to leverage

service networks. In Service-Oriented Computing–ICSOC 2008 Workshops, pages

103-117. Springer, 2009.

[27] M. Bitsaki, O. Danylevych, W. van den Heuvel, G. Koutras, F. Leymann, M.

Mancioppi, C. Nikolaou, and M. Papazoglou: An Architecture for Managing the

Lifecycle of Business Goals for Partners in a Service Network. In 1st European

Conference ServiceWave. Lecture Notes in Computer Science vol. 5377, pages 196-

207, Madrid, 2008.

[28] O. Danylevych, D. Karastoyanova, and F. Leymann. Service Networks Modelling: An

SOA & BPM Standpoint, Springer, 2010.

[29] V. Kartseva, J. Hulstijn, J. Gordijn, and Y.-H. Tan. Control patterns in a health-care

network. European Journal of Information Systems, 19(3):320-343, 2010.

[30] H. Akkermans, Z. Baida, J. Gordijn, N. Peña, A. Altuna, and I. Laresgoiti. Using

Ontologies to Bundle Real-World Services. IEEE Intelligent Systems, 19(4):57-66,

2004.

[31] Z. Baida, J. Gordijn, and H. Akkermans. Service Ontology, 2001.

[32] S. de Kinderen and J. Gordijn: e
3
Service: A Model-based Approach for Generating

Needs-driven E-service Bundles in a Networked Enterprise. In 16th European

Conference on Information Systems (ECIS), pages 1-12, Galway, 2008.

[33] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Information

Systems Research. MIS Quarterly, 28(1):75-105, 2004.

E Appendix

 230

[34] T. Wilde and T. Hess. Methodenspektrum der Wirtschaftsinformatik: Überblick und

Portfoliobildung. Arbeitspapiere des Instituts für Wirtschaftsinformatik und Neue

Medien, LMU München, 2, 2006.

[35] A. Osterwalder. The Business Model Ontology: a proposition in a design science

approach. Institut d’Informatique et Organisation. Lausanne, Switzerland, University

of Lausanne, Ecole des Hautes Etudes Commerciales HEC, 173, 2004.

[36] E. Paslaru. Introduction to Design Research, A Methodological Background for

Scientific Work. 2004.

[37] H. Plattner, C. Meinel, and L. Leifer. Design thinking: understand-improve-apply.

Springer Publishing Company, Incorporated, 2010.

[38] M. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren. Action design

research. MIS Quarterly, 35(1):37-56, 2011.

[39] R. Davison, M. G. Martinsons, and N. Kock. Principles of canonical action research.

Information Systems Journal, 14(1):65-86, 2004.

[40] S. Scholten, U. Scholten, and R. Fischer. Composite Solutions for Consumer-Driven

Supply Chains: How to Control the Service-enabling Ecosystem? Proceedings of the

3rd academic symposium on Supply Management, Würzburg, Gabler-Verlag, 2010.

[41] U. Scholten, R. Fischer, D. Bojkov, and N. May: Supply Chain Control building on

Emergent Self-Organizing Effects. In Supply Management Research, pages 311-335,

2011.

[42] U. Scholten. Service Level Management in Platform Ecosystems. Informatik 2010,

Leipzig, Gesellschaft für Informatik, 2011.

[43] L. S. Kirsch. Portfolios of control modes and IS project management. Information

Systems Research, 8(3):215-239, 1997.

[44] U. Scholten, N. Schuster, and S. Tai: A pattern language and repository for service

network management. In Service-Oriented Computing and Applications (SOCA),

2012 5th IEEE International Conference on, pages 1-9. IEEE, 2012.

[45] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design science

research methodology for information systems research. Journal of Management

Information Systems, 24(3):45-77, 2007.

[46] K. M. Eisenhardt. Building Theories from Case Study Research. Academy of

Management Review, 14(4):532-550, 1989.

[47] C. Legner. Do Web Services Foster Specialization?-An Analysis of Commercial Web

Service Directories. Business Services: Konzepte, Technologien, Anwendungen-9.

Internationale Tagung Wirtschaftsinformatik Wien, 1:67-76, 2009.

[48] U. Scholten, R. Fischer, and C. Zirpins. Perspectives for Web Service Intermediaries:

How Influence on Quality Makes the Difference. E-Commerce and Web

Technologies:145-156, 2009.

[49] Trello. Trello Homepage. 2013, www.Trello.com, retrieved 03.02.2013.

[50] N. May, U. Scholten, and R. Fischer: Towards an Automated Gap Analysis for E-

Service Portfolios. In, pages 274-281. IEEE, 2011.

[51] J. Van Bon. Foundations of IT Service Management basierend auf ITIL. Van Haren

Publishing, 2008.

[52] J. R. Commons. INSTITUTIONAL ECONOMICS. American Economic Review,

21:648-657, 1931.

[53] J. Rohlfs. A theory of interdependent demand for a communications service. The Bell

Journal of Economics and Management Science:16-37, 1974.

Dynamic Network Notation Ulrich Scholten

 231

[54] S. S. Oren and S. A. Smith. Critical mass and tariff structure in electronic

communications markets. The Bell Journal of Economics:467-487, 1981.

[55] M. L. Katz and C. Shapiro. Technology adoption in the presence of network

externalities. The journal of political economy:822-841, 1986.

[56] C. Shapiro and H. R. Varian. VERSIONING: THE SMART WAY TO. Harvard

business review:107, 1998.

[57] J. C. Rochet and J. Tirole. Platform competition in two‐sided markets. Journal of the

European Economic Association, 1(4):990-1029, 2003.

[58] T. Eisenmann, G. Parker, and M. Van Alstyne. Opening platforms: How, when and

why? Harvard Business School Entrepreneurial Management Working Paper(09-030),

2008.

[59] G. Nicolis and I. Prigogine. Self-organization in nonequilibrium systems: from

dissipative structures to order through fluctuations. John Wiley and Sons, New York,

1977.

[60] I. Prigogine, I. Stengers, and H. R. Pagels. Order out of Chaos. Physics Today, 38:97,

1985.

[61] T. De Wolf and T. Holvoet. Towards a methodology for engineering self-organising
emergent systems. Frontiers in Artificial Intelligence and Applications, 135:18, 2005.

[62] B. C. Neuman. Scale in distributed systems. Readings in Distributed Computing

Systems. IEEE Computer Society Press, 1994.

[63] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing: How is the weather tomorrow?:

towards a benchmark for the cloud. In Proceedings of the Second International

Workshop on Testing Database Systems, pages 9. ACM, 2009.

[64] R. D. Smith. The chief technology officer: Strategic responsibilities and relationships.

Research-Technology Management, 46(4):28-36, 2003.

[65] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bijlsma:

Towards a reference framework for software product management. In Requirements

Engineering, 14th IEEE International Conference, pages 319-322. IEEE, 2006.

[66] S. Trenner. Der CIO in Unternehmen. Seminar Corporate Governance, Potsdam,

2009.

[67] D. Tapscott. The digital economy: Promise and peril in the age of networked

intelligence. McGraw-Hill New York, 1996.

[68] A. Meier and S. Ullrich. Zur Klassifikation von Geschaeftsmodellen im Market

Space. HMD-Praxis der Wirtschaftsinformatik, 261:7-19, 2008.

[69] R. C. Lewis and B. H. Booms. The marketing aspects of service quality. Emerging

perspectives on services marketing, 65(4):99-107, 1983.

[70] S. Frølund and J. Koistinen. Qml: A language for quality of service specification. HP

Laboratories Technical Report HPL No. 1368-6798, 1998.

[71] A. Parasuraman, V. A. Zeithaml, and L. L. Berry. A conceptual model of service

quality and its implications for future research. The Journal of Marketing:41-50,

1985.

[72] A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service

level agreements for web services. Journal of Network and Systems Management,

11(1):57-81, 2003.

[73] J. O'Sullivan. Towards a Precise Understanding of Service Properties. Dissertation,

Brisbane, 2006.

[74] E. M. Maximilien and M. P. Singh. Reputation and endorsement for web services.

ACM SIGecom Exchanges, 3(1):24-31, 2001.

E Appendix

 232

[75] L. H. Vu, M. Hauswirth, F. Porto, and K. Aberer. A search engine for QoS-enabled

discovery of semantic web services. International Journal of Business Process

Integration and Management, 1(4):244-255, 2006.

[76] S. Kalepu, S. Krishnaswamy, and S. W. Loke: Reputation= f (user ranking,

compliance, verity). In Web Services, 2004. Proceedings. IEEE International

Conference on, pages 200-207. IEEE, 2004.

[77] J. Cardoso and A. Sheth. Semantic e-workflow composition. Journal of Intelligent

Information Systems, 21(3):191-225, 2003.

[78] E. Kim and Y. Lee. Quality Model for Web Services (WSQM). Organisation for the

Advancement of Structured Information Standards (OASIS), 2005.

[79] F. M. Feller. PayPal—Globales Zahlungssystem mit Kompetenz für lokale

Zahlungsmärkte. Handbuch E-Money, E-Payment & M-Payment:237-247, 2006.

[80] C. Janiesch, M. Niemann, and N. Repp: Governance in the Internet of Services:

Governing Service Delivery of Service Brokers. In (Pre-)ICIS SIG SVC Conference,

pages 1-2, Paris, 2008.

[81] B. S. Frey and F. Oberholzer-Gee. The cost of price incentives: An empirical analysis

of motivation crowding-out. The American economic review:746-755, 1997.

[82] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online

service provision. Decision support systems, 43(2):618-644, 2007.

[83] L. Mui, M. Mohtashemi, and C. Ang: A probabilistic rating framework for pervasive

computing environments. In Proceedings of the MIT Student Oxygen Workshop

(SOW’2001), 2001.

[84] Facebook. Homepage. 2013, www.Facebook.com, retrieved 01.02.2013.

[85] K. Chard, S. Caton, O. Rana, and K. Bubendorfer: Social cloud: Cloud computing in

social networks. In Cloud Computing (CLOUD), 2010 IEEE 3rd International

Conference on, pages 99-106. IEEE, 2010.

[86] E. M. Rogers. Diffusion of innovations. Simon and Schuster, 1995.

[87] M. Claypool, P. Le, M. Wased, and D. Brown: Implicit interest indicators. In

Proceedings of the 6th international conference on Intelligent user interfaces, pages

33-40. ACM, 2001.

[88] S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. Evaluating implicit

measures to improve web search. ACM Transactions on Information Systems (TOIS),

23(2):147-168, 2005.

[89] Dropbox. Homepage. 2013, www.Dropbox.com, retrieved 03.02.2013.

[90] C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. International

Journal on Semantic Web and Information Systems (IJSWIS), 5(3):1-22, 2009.

[91] T. Berners-Lee. Long Live the Web. Scientific American, 303(6):80-85, 2010.

[92] A. Hors and M. Nally. Using read/write Linked Data for Application Integration–

Towards a Linked Data Basic Profile. Linked Data on the Web (LDOW2012), 2012.

[93] C. Haas, S. Caton, K. Chard, and C. Weinhardt: Co-operative infrastructures: An

economic model for providing infrastructures for social cloud computing. In

Proceedings of the 46th Annual Hawaii International Conference on System Sciences

(HICSS), 2013.

[94] S. Tai, N. Desai, and P. Mazzoleni: Service communities: applications and

middleware. In Proceedings of the 6th international workshop on Software

engineering and middleware, pages 17-22. ACM, 2006.

[95] I. Silva-Lepe, R. Subramanian, I. Rouvellou, T. Mikalsen, J. Diament, and A. Iyengar.

Soalive service catalog: A simplified approach to describing, discovering and

Dynamic Network Notation Ulrich Scholten

 233

composing situational enterprise services. Service-Oriented Computing–ICSOC

2008:422-437, 2008.

[96] A. G. Kleppe. Software language engineering: creating domain-specific languages

using metamodels. Addison-Wesley Professional, 2009.

[97] N. Chomsky. Three models for the description of language. Information Theory, IRE

Transactions on, 2(3):113-124, 1956.

[98] J. Lyons. Introduction to theoretical linguistics. Cambridge university press, 1968.

[99] N. Chomsky. Syntactic structures. Walter de Gruyter, 2002.

[100] J. H. Larkin and H. A. Simon. Why a Diagram Is (Sometimes) Worth Ten Thousand

Words. Cognitive Science, 11(1):65-99, 1987.

[101] H. A. Simon. On the forms of mental representation. Perception and cognition: Issues

in the foundations of psychology, 9:3-18, 1978.

[102] Object Management Group Inc. Business Process Modeling Notation, V1.1. 2008,

http://www.bpmn.org/Documents/BPMN%201-1%20Specification.pdf, retrieved

2008-10-20.

[103] R. W. Lewis. Programming industrial control systems using IEC 1131-3. Iet, 1998.

[104] OMG. UML 2.0 specification. 2005, retrieved 03.03.2012.

[105] B. Shneiderman. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. 4th edn. Addison-Wesley Amsterdam, 2004.

[106] J. Bertin. Semiology of graphics: diagrams, networks, maps. 1983.

[107] T. Clark, A. Evans, and S. Kent. Engineering modelling languages: A precise meta-

modelling approach. Fundamental Approaches to Software Engineering:242-260,

2002.

[108] É. André. Metamodeling and Language Engineering, pages. 1-15, Fakultät für

Theoretische Informatik, Technische Universität Dresden, 2006.

[109] D. Howe. Abstract Syntax. Free Online Dictionary of Computing, 1998.

[110] OMG. Meta Object Facility (MOF) Core Specification 2.0. 2006,

http://www.omg.org/mof/, retrieved 03.03.2012.

[111] OMG. 2.0 OCL Specification. 2003, retrieved 02.03.2013.

[112] J. W. Forrester. Industrial dynamics. 1961. Pegasus Communications, Waltham, MA,

1961.

[113] M. Rysman. The economics of two-sided markets. The Journal of Economic

Perspectives:125-143, 2009.

[114] F. M. Bass. A new product growth model for consumer durables. Management

Science, 15:215-227, 1969.

[115] F. Bass. Frank M. Bass Official Website. 2012,

http://www.bassbasement.org/BassModel/, retrieved 11.10.2012.

[116] Ventana. VenSim PLE Plus - User's Guide Version 4. Ventana Systems Inc, Harvard,

2011.

[117] E. Ries. The lean startup: How today's entrepreneurs use continuous innovation to

create radically successful businesses. Crown Business, 2011.

[118] M. A. Schilling. 8. Protecting or diffusing a technology platform: tradeoffs in

appropriability, network externalities, and architectural control. Platforms, Markets

and Innovation:192, 2009.

[119] K. Boudreau. Open platform strategies and innovation: Granting access vs. devolving

control. Management science, 56(10):1849-1872, 2010.

[120] A. Hagiu and R. S. Lee. Exclusivity and Control. Journal of Economics &

Management Strategy, 20(3):679-708, 2011.

E Appendix

 234

[121] O. Föllinger. Regelungstechnik, Einführung in die Methoden und ihre Anwendungen.

Aufl. Hüthig, Heidelberg, 1994.

[122] N. Wiener. Cybernetics, or Communication and Control in the Animal and the

Machine. MIT Press, Boston, 1948.

[123] K. M. Eisenhardt. Control: Organizational and economic approaches. Management

science:134-149, 1985.

[124] W. G. Ouchi. A conceptual framework for the design of organizational control

mechanisms. Management science:833-848, 1979.

[125] S. J. Ashford and A. S. Tsui. Self-regulation for managerial effectiveness: The role of

active feedback seeking. Academy of Management Journal:251-280, 1991.

[126] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels, 676

http://www. ietf. org/rfc/rfc2119. txt, IETF RFC 2119. 1997, retrieved 14.09.2012.

[127] Salesforce.com. Homepage. 2013, www.Salesforce.com, retrieved 02.02.2013.

[128] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation systems.

Communications of the ACM, 43(12):45-48, 2000.

[129] O. M. G. OMG. Object Constraint Language (OCL). 2012,

http://www.omg.org/spec/OCL/2.3.1, retrieved 03.03.2012.

[130] E. Guldentops, Steven De Haes, Gary Hardy, Jacqueline Ormsby, Daniel Fernando

Ramos, Jon Singleton, and Paul A. Williams. Board Briefing on IT-Governance,

Rolling Meadows, IT Governance Institute, 2003.

[131] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in information

visualization: using vision to think. Morgan Kaufmann, 1999.

[132] Z. Whittaker. How far do Google Drive's terms go in 'owning' your files? 2013,

http://www.zdnet.com/blog/btl/how-far-do-google-drives-terms-go-in-owning-your-

files/75228, retrieved 08.02.2013.

[133] C. Rupp, J. Hahn, S. Queins, M. Jeckle, and B. Zengler. UML 2 glasklar. Hanser,

2005.

[134] R. B. Ferguson. Salesforce.com Unveils Force.com Cloud Computing Architecture.

eWeek, Entreprise IT Technology New, Opinion and Reviews, Chicago, Ziff Davis

Enterprise, 2008.

[135] N. Schuster, C. Zirpins, and U. Scholten. How to Balance Flexibility and

Coordination? Service-oriented Model and Architecture for Document-based

Collaboration on the Web. International Conference on Service Oriented Computing

& Applications SOCA 2011, Irvine, IEEE, 2011.

[136] T. Raffelsieper, J. Becker, M. Matzner, and C. Janiesch. Requirements for a Pattern

Language for Event-driven Business Activity Monitoring. Münster, 2011.

[137] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.

Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

[138] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 2005.

[139] S. Scholten and U. Scholten. Platform-based Innovation Management: Directing

External Innovational Efforts in Platform Ecosystems. Journal of the Knowledge

Economy:1-21, 2012.

[140] M. Cusumano and A. Gawer. The Elements of Platform Leadership. MIT Sloan

Management Review, 43/3:51-58, 2002.

[141] F. Keller and S. Wendt: FMC: An Approach Towards Architecture-centric System

Development. In 10th IEEE International Conference and Workshop on the

Dynamic Network Notation Ulrich Scholten

 235

Engineering of Computer-Based Systems (ECBS), pages 173-182, Huntsville, AL,

2003.

[142] M. Czuchra, N. Peters, W. Tscheschner, M. Kuntze, and G. Decker. Oryx-Editor:

Web-based Graphical Business Process Editor. . 2012, http://code.google.com/p/oryx-

editor/, retrieved 15.05.2012.

[143] G. Decker, H. Overdick, and M. Weske. Oryx – An Open Modeling Platform for the

BPM Community. In M. Dumas, M. Reichert, and M.-C. Shan (eds.) Business

Process Management, vol. 5240, pages 382-385. Springer Berlin / Heidelberg, 2008.

[144] G. Decker, A. Grosskopf, and A. Barros: A Graphical Notation for Modeling Complex

Events in Business Processes. In 11th IEEE International Enterprise Distributed

Object Computing Conference (EDOC), pages 27, Annapolis, MD, 2007.

[145] C. Cabanillas, M. Resinas, and A. Ruiz-Cortés. RAL: A High-Level User-Oriented

Resource Assignment Language for Business Processes. In F. Daniel, K. Barkaoui,

and S. Dustdar (eds.) Business Process Management Workshops, vol. 99, pages 50-

61. Springer, Heidelberg, 2012.

[146] B. Hoehrmann. RFC 4329 Scripting Media Types. 2006.

[147] D. Crockford. The application/json Media Type for JavaScript Object Notation

(JSON). 2006, http://tools.ietf.org/html/rfc4627, retrieved 15.05.2012.

[148] J. Ferraiolo, F. Jun, and D. Jackson. Scalable vector graphics (SVG) 1.1 specification.

2003, retrieved 14.02.2013.

[149] U. Scholten and M. Reimchen. DynoAnalyzer, pages. Analyzer expanding

DynoCloud.org, Karlsruhe, Google Code, 2012.

[150] B. Naveh. JGraphT. 2008, http://jgrapht. sourceforge. net, retrieved 11.10.2012.

[151] M. Josek. Erweiterung der Dynamic Network Notation und des DynoCloud Editors

um ein ordinales Gewichtungsverfahren von Base-Value Alternativen. Bachelor

Arbeit, Karlsruhe, 2012.

[152] N. A. Schuster. Coordinating Service Compositions: Model and Infrastructure for

Collaborative Creation of Electronic Documents. Dissertation, Karlsruhe Institute of

Technology, Karlsruhe, 2013.

[153] S. L. Pfleeger and B. A. Kitchenham. Principles of survey research: part 1: turning

lemons into lemonade. SIGSOFT Softw. Eng. Notes, 26(6):16-18, 2001.

[154] B. A. Kitchenham and S. L. Pfleeger. Principles of survey research part 2: designing a

survey. SIGSOFT Softw. Eng. Notes, 27(1):18-20, 2002.

[155] B. Kitchenham and S. L. Pfleeger. Principles of survey research: part 5: populations

and samples. SIGSOFT Softw. Eng. Notes, 27(5):17-20, 2002.

[156] B. Kitchenham and S. L. Pfleeger. Principles of survey research part 4: questionnaire

evaluation. SIGSOFT Softw. Eng. Notes, 27(3):20-23, 2002.

[157] U. Scholten, R. Fischer, C. Zirpins, and S. Scholten. DYNO: A Notation to Leverage

Dynamic Network Effects in PaaS Ecosystems. International Conference on Service

Oriented Computing & Applications SOCA 2011, Irvine, IEEE, 2011.

[158] S. T. Pai and A. Fellah. India 4G and Cellular Market Analysis and Forecasts, 2010-

2015. Maravedis Wireless Market Research & Analysis, pages. 01.09.2010, New

Delhi, Maravedis, 2010.

[159] J. Becker, M. Rosemann, and C. v. Uthmann. Guidelines of Business Process

Modeling. In W. van der Aalst, J. Desel, and A. Oberweis (eds.) Business Process

Management: Models, Techniques, and Empirical Studies. Lecture Notes In

Computer Science vol. 1806, pages 30-49. Springer, Berlin, 2000.

E Appendix

 236

[160] B. A. Kitchenham and S. L. Pfleeger. Principles of survey research: part 3:

constructing a survey instrument. SIGSOFT Softw. Eng. Notes, 27(2):20-24, 2002.

[161] E. Wittern and C. Zirpins. Service Feature Modeling - Modeling and Participatory

Ranking of Service Design Alternatives, Karlsruhe, Karlsruhe Institute of Technology,

2012.

[162] Loughborough-University. Questionnaire Design. 2012,

http://www.lboro.ac.uk/media/wwwlboroacuk/content/library/downloads/advicesheets

/questionnaire.pdf, retrieved 25.10.2012.

[163] S. S. Stevens. On the theory of scales of measurement, Bobbs-Merrill, College

Division, 1946.

[164] S. Siegel. Nonparametric statistics. The American Statistician, 11(3):13-19, 1957.

